
A Computation Note for Assembling Plasmodium 3D7 with

CLEAR, Part I

Jason Chin
Pacific Biosciences

June 4, 2013

1 A Computation Note for Assembling Plasmodium 3D7 with
CLEAR, Part I

1.1 What Do You Need To Reproduce The Assembly Shown Here

• data: pread.fa and pr pr strigent.m4

• python 2.7 / IPython 0.13.2

• pbcore from https://github.com/PacificBiosciences/pbcore

• optional: summarizeAssembly.py from PBJelly 12.7.25 installed in
~/bin/PBJelly 12.7.25/

• optional: nucmer and mummerplot from mummer3 (http://mummer.sourceforge.net/)

• optional data: reference PlasmoDB-9.2 Pfalciparum3D7 Genome.fasta from PlasmoDB

(http://plasmodb.org/plasmo/)

1.2 Introduction

This is a brief note and code to show how to assemble Plasmodium 3D7 (
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=36329) genome with
PacBio(R) pre-assembled reads by a “Consistent Long-read Evidence Assembling pRocess
(CLEAR)”.

1.3 Why Do We Sequence Plasmodium 3D7 for This Assembly Example?

Plasmodium is a parasite that causes malaria. Understanding its genetics will help to find a cure to
the disease. From the sequencing technology point of view, it posts a great challenge to sequence
and assembly the genome. Due to its very in-balanced AT/GC content (AT ˜= 80% and GC
˜=20%), most sequence technology can not produce good and long sequences that enables assem-
bling the genome into long contigs. For example, the earlier publication using 2nd geneneration
sequence technology can only get contig N50 about 1 to 4 kbp (BMC Genomics. 2011; 12: 116,
http://www.biomedcentral.com/1471-2164/12/116). (See other related assembly statistics from
http://www.broadinstitute.org/annotation/genome/plasmodium falciparum spp/AssemblyStats.html)
Using Sanger sequencing technology will get a better results of which the contig N50 is about 10
to 20kb. Here we demostrate that using PacBio(R) RS Single Molecule Real-Time (SMRT(R))

1

sequencing technology, we can easily assemble the genome much better results (N50 ˜= 954kb
about 43x of the) than the earlier 2nd gen. sequencing results even with some simple home-made
assembly code.

We choose the 3D7 strain because the avaiability of DNA and it is the only
one that has good finished reference that we can compare our results. (see also
http://www.broadinstitute.org/annotation/genome/plasmodium falciparum spp/GenomesIndex.html).
We expect the performance will be similar to other strains of Plasmodium.

1.4 About “Consistent Long-read Evidence Assembling pRocess (CLEAR)”

The idea is very simple. When the read length is getting long, there should be more and more reads
that can be “consistently” overlapped such that they are easy to be assembled with a very simple
greedy layout algorithm. Namely, if there is no repeat or just short repeats within a long read, we
should be able to get consistent overlapping alignments of such read to other long reads that come
from the overlapped regions in the genome. We can examine the overlapping alignment information
to indentify such reads. Those “split-reads,” namely reads with non-consistent “split” structure in
their alignments to others, are excluded initially in the assembly process. The “non-split” reads
are assembled first as unitigs. We can then bring back the “split-reads” back to the assembly if the
orders of the untigs can be resolved by other means. Or, we can assemble the “split-reads” using
more sophisticated algorithms to resolve the repeats then bring the resulting contigs back to the
assembly. Here we show the first few steps to assemble the Plasmodium 3D7 using such strategy.

The notebook covers the Step I and II for assembling Plasmodium 3D7.

from IPython.display import Image

Image(filename="CLEAR_Sketch.png")

A set of Plasmodium 3D7 sequencing data was generated using the PacBio(R) RS with
C2 chemisty. Data from 30 SMRT(R) Cells was collected. After a pre-assembly process,

2

the raw reads were coverted to preassembled reads (p-reads). Here is a brief statistics of
those p-reads. Some of the details for this preassembly strp is published in this paper URL:
http://www.nature.com/nmeth/journal/v10/n6/full/nmeth.2474.html. The code for the preassem-
bly step can be download from https://github.com/PacificBiosciences/HBAR-DTK.

!~/bin/PBJelly_12.7.25/summarizeAssembly.py preads.fa

Scaffold Stats

#Seqs 105869

Min 401

1st Qu. 2273

Median 4193

Mean 4232

3rd Qu. 5737

Max 16282

Total 448122809

n50 5398

n90 2506

n95 1831

====================

Contig Stats

#Seqs 105869

Min 401

1st Qu. 2273

Median 4193

Mean 4232

3rd Qu. 5737

Max 16282

Total 448122809

n50 5398

n90 2506

n95 1831

====================

Gap Stats

No Gaps!

====================

1.5 Using blasr to Get the Overlapping Information

For assembling the Plasmodium data with CLEAR, we first generate overlapping alignments using
blasr.

The p-reads are aligned against each other to detect overlaps. We use the following blasr

command to generate the alignment information.

blasr preads.fa preads.fa -maxScore -150 -m 4 -nproc 32 -bestn 64 -nCandidates 128\

-maxLCPLength 25 -minMatch 24 -scoreMatrix \

"-1 10 10 10 10 10 -1 10 10 10 10 10 -1 10 10 10 10 10 -1 10 10 10 10 10 10" -indel 10 \

-noSplitSubreads -out pr_pr_strigent.m4

3

The blasr alignment for this dataset takes quite a while. We use a pre-generated
pr pr strigent.m4 for this notebook.

1.6 The simple asm Code Used to Generate the Assembly

The following the code can be used to generate the initial unitigs.
Import some standard modules for later:

import sys

import os

from pbcore.io import FastaIO

Define two utility functions:

• rev aln strand(): take the alignment information of a pair of read, return the alignment
information of swapped query-target pair.

• rev cmp(): reverse compliment sequence

def rev_aln_strand(aln):

q_strand, q_s, q_e, q_l = aln[0]

t_strand, t_s, t_e, t_l = aln[1]

q_strand = 1 - q_strand

q_s, q_e = q_l - q_e, q_l - q_s

t_strand = 1 - t_strand

t_s, t_e = t_l - t_e, t_l - t_s

return ((q_strand, q_s, q_e, q_l), (t_strand, t_s, t_e, t_l))

rev_map = dict(zip("ACGTacgtNn","TGCAtgcaNn"))

def rev_cmp(seq):

return "".join([rev_map[c] for c in seq[::-1]])

The Overlap class for creating objects to store the overlap information and related operations:

class Overlap(object):

"""

represent the overlap information.

"""

def __init__(self, query_id, target_id, aln, aln_score, aln_idt,

containment_tolerance):

"the alginment data will be normalized to such the the query is always 5’ -> 3’"

self.query_id = query_id

self.target_id = target_id

q_strand, q_s, q_e, q_l = aln[0]

t_strand, t_s, t_e, t_l = aln[1]

self.aln_score = aln_score

self.aln_idt = aln_idt

if q_strand == 1:

self.aln = rev_aln_strand(aln)

4

else:

self.aln = aln

self.t_offset = 0

self.containment_tolerance = containment_tolerance

self.overlap_type, self.t_offset = self.get_overlap_type(self.

containment_tolerance)

def get_overlap_type(self, containment_tolerance):

q_strand, q_s, q_e, q_l = self.aln[0]

t_strand, t_s, t_e, t_l = self.aln[1]

t_offset = None

if q_s < containment_tolerance and q_e > q_l - containment_tolerance:

""" ----------------------------> target """

""" ---------------------> query """

""" or """

""" <---------------------------- target """

""" ---------------------> query """

overlap_type = "contained"

t_offset = - q_s

elif t_s < containment_tolerance and t_e > t_l - containment_tolerance:

""" ---------------------> target """

""" ----------------------------> query """

""" or """

""" <--------------------- target """

""" ----------------------------> query """

overlap_type = "contains"

t_offset = q_s

elif q_s <= containment_tolerance and t_l - t_e <= containment_tolerance:

""" ---------------------> target """

""" --------------------> query """

""" or """

""" <--------------------- target """

""" --------------------> query """

overlap_type = "5p"

t_offset = - q_s

elif q_l - q_e <= containment_tolerance and t_s <= containment_tolerance:

""" --------------------> target """

""" ---------------------> query """

""" or """

""" <--------------------- target """

""" --------------------> query """

overlap_type = "3p"

t_offset = q_s

else:

overlap_type = "split"

#print q_strand, q_s, q_e, q_l

#print t_strand, t_s, t_e, t_l

#print overlap_type, t_offset

return overlap_type, t_offset

5

SequenceFragment class for creating objects that store the sequence and overlapping information
of a DNA fragment (sequence read):

class SequenceFragment(object):

def __init__(self, id_):

self.id_ = id_

self.seq = None

self.overlaps = []

def append_overlap(self, overlap):

self.overlaps.append(overlap)

def load_seq(self, seq):

self.seq = seq

def best_overlap(self, end):

score_ovlp = []

for ovlp in self.overlaps:

if ovlp.overlap_type != end:

continue

score_ovlp.append(ovlp)

if score_ovlp:

score_ovlp.sort(key = lambda x: x.aln_score)

return score_ovlp[0]

else:

return None

@property

def best_3p_overlap(self):

return self.best_overlap("3p")

@property

def best_5p_overlap(self):

return self.best_overlap("5p")

Here we define a function get contained or split reads from m4() which will scan through
the blasr m4 output and identify reads that have split alignment and the reads that are fully
contained in the other reads.

Note that if a read has unique sequence > 500 bp for both three-prime and five-prime ends, it
will not be called as “split” read.

We scan the m4 file twice. The first time we only identify the split reads. The second time the
code finds out the contained reads. A query read is called as “contained” if the target is not a “split
read” or both query and target are “split”.

def get_contained_or_split_reads_from_m4(m4_filename, permitted_error_pct,

containment_tolerance):

split_read_frgs = set()

contained_read_frgs = set()

with open(m4_filename) as m4_f:

6

for l in m4_f:

l = l.strip().split()

q_name, t_name = l[0:2]

if q_name == t_name:

continue

aln_score = int(l[2])

aln_idt = float(l[3])

if aln_idt < 100 - permitted_error_pct:

continue

q_strand, q_s, q_e, q_l = (int(x) for x in l[4:8])

t_strand, t_s, t_e, t_l = (int(x) for x in l[8:12])

aln = ((q_strand, q_s, q_e, q_l), (t_strand, t_s, t_e, t_l))

ovlp = Overlap(q_name, t_name, aln, aln_score, aln_idt, containment_tolerance)

#print " ".join(l), ovlp.overlap_type

if ovlp.overlap_type == "split":

if q_s < 500 or q_l - q_e < 500:

split_read_frgs.add(q_name)

if t_s < 500 or t_l - t_e < 500:

split_read_frgs.add(t_name)

with open(m4_filename) as m4_f:

for l in m4_f:

l = l.strip().split()

q_name, t_name = l[0:2]

if q_name == t_name:

continue

aln_score = int(l[2])

aln_idt = float(l[3])

if aln_idt < 100 - permitted_error_pct:

continue

q_strand, q_s, q_e, q_l = (int(x) for x in l[4:8])

t_strand, t_s, t_e, t_l = (int(x) for x in l[8:12])

aln = ((q_strand, q_s, q_e, q_l), (t_strand, t_s, t_e, t_l))

ovlp = Overlap(q_name, t_name, aln, aln_score, aln_idt, containment_tolerance)

#print " ".join(l), ovlp.overlap_type

if ovlp.overlap_type == "split":

continue

elif ovlp.overlap_type == "contained":

if t_name in split_read_frgs:

if q_name in split_read_frgs:

contained_read_frgs.add(q_name)

else:

contained_read_frgs.add(q_name)

elif ovlp.overlap_type == "contains":

if q_name in split_read_frgs:

if t_name in split_read_frgs:

contained_read_frgs.add(t_name)

else:

contained_read_frgs.add(t_name)

return split_read_frgs, contained_read_frgs

7

The get unique ovlp reads from m4() function scans the blasr m4 file again to constuct
SequenceFragment objects and the associated alignment. The “contained” reads and “split” are
excluded. We expect the overlapping of non-split and non-contained reads are all “consistent”.

def get_unique_ovlp_reads_from_m4(m4_filename, split_reads, contained_reads,

permitted_error_pct, containment_tolerance):

read_frgs = {}

excluded_reads = split_reads | contained_reads

#excluded_reads = contained_reads

with open(m4_filename) as m4_f:

for l in m4_f:

l = l.strip().split()

q_name, t_name = l[0:2]

if q_name == t_name:

continue

if q_name in excluded_reads:

continue

if t_name in excluded_reads:

continue

aln_score = int(l[2])

aln_idt = float(l[3])

if aln_idt < 100 - permitted_error_pct:

continue

q_strand, q_s, q_e, q_l = (int(x) for x in l[4:8])

t_strand, t_s, t_e, t_l = (int(x) for x in l[8:12])

aln = ((q_strand, q_s, q_e, q_l), (t_strand, t_s, t_e, t_l))

ovlp = Overlap(q_name, t_name, aln, aln_score, aln_idt, containment_tolerance)

#print " ".join(l), ovlp.overlap_type

if ovlp.overlap_type not in ["3p", "5p"]:

continue

read_frgs[q_name] = read_frgs.get(q_name, SequenceFragment(q_name))

read_frgs[q_name].append_overlap(ovlp)

aln1, aln2 = ovlp.aln

aln = aln2, aln1

read_frgs[t_name] = read_frgs.get(t_name, SequenceFragment(t_name))

new_ovlp = Overlap(t_name, q_name, aln, ovlp.aln_score, ovlp.aln_idt,

containment_tolerance)

read_frgs[t_name].append_overlap(new_ovlp)

return read_frgs

Take the DNA fragment and its overlapping data, we can start to walk through the overlapped
reads to construt contigs just using the read sequences. Since we do expect to do a final round of
consensus, we keep it simple here by ignoring minor errors within the reads. get path() takes the
read fragment data and an initial fragment identifier and the direction, 3-prime end or 5-prime end
to extend, it will then find best overlaper from one end of the contig and extend the contig. The
extension ends when there is no un-used fragment as the best overlapped read.

8

def get_path(read_frgs, init_read_frg, direction="3p", visited=set()):

reverse_orientation = { "=>":"<=", "<=":"=>" }

#visited = set()

cur_frg = init_read_frg

cur_orientation = "=>"

cum_len = 0

path = []

seqs = []

c_s = 0

c_e = len(cur_frg.seq)

while 1:

visited.add(cur_frg.id_)

if direction == "3p":

if cur_orientation == "=>":

if cur_frg.best_3p_overlap == None:

seqs.append(cur_frg.seq[c_s:])

path.append((direction, cur_orientation, cur_frg.id_, c_s, c_e,

next_overlap.query_id, q_strand, q_s, q_e, q_l, next_overlap.

target_id, t_strand, t_s, t_e, t_l))

break

else:

"""

t_s t_e

-----------------> next_frg

--------------------> cur_frg

q_s q_e

t_e t_s

<----------------- next_frg

--------------------> cur_frg

q_s q_e

"""

next_overlap = cur_frg.best_3p_overlap

q_aln, t_aln = next_overlap.aln

q_strand, q_s, q_e, q_l = q_aln

t_strand, t_s, t_e, t_l = t_aln

c_e = q_s

seqs.append(cur_frg.seq[c_s:c_e])

path.append((direction, cur_orientation, cur_frg.id_, c_s, c_e,

next_overlap.query_id, q_strand, q_s, q_e, q_l, next_overlap.

target_id, t_strand, t_s, t_e, t_l))

#print "1:",c_s, c_e

if t_strand == 0:

c_s = t_s

else:

9

c_e = t_l - t_s

cur_orientation = reverse_orientation[cur_orientation]

elif cur_orientation == "<=":

if cur_frg.best_5p_overlap == None:

seqs.append(rev_cmp(cur_frg.seq[:c_e]))

path.append((direction, cur_orientation, cur_frg.id_, c_s, c_e,

next_overlap.query_id, q_strand, q_s, q_e, q_l, next_overlap.

target_id, t_strand, t_s, t_e, t_l))

break

else:

"""

t_e t_s

<----------------- next_frg

<-------------------- cur_frg

q_e q_s

t_s t_e

-----------------> next_frg

<-------------------- cur_frg

q_e q_s

"""

next_overlap = cur_frg.best_5p_overlap

q_aln, t_aln = next_overlap.aln

q_strand, q_s, q_e, q_l = q_aln

t_strand, t_s, t_e, t_l = t_aln

c_s = q_e

seqs.append(rev_cmp(cur_frg.seq[c_s:c_e]))

path.append((direction, cur_orientation, cur_frg.id_, c_s, c_e,

next_overlap.query_id, q_strand, q_s, q_e, q_l, next_overlap.

target_id, t_strand, t_s, t_e, t_l))

#print "3:",c_s, c_e

if t_strand == 0:

c_e = t_e

else:

c_s = t_l - t_e

cur_orientation = reverse_orientation[cur_orientation]

if direction == "5p":

if cur_orientation == "=>":

if cur_frg.best_5p_overlap == None:

seqs.append(cur_frg.seq[:c_e])

path.append((direction, cur_orientation, cur_frg.id_, c_s, c_e,

next_overlap.query_id, q_strand, q_s, q_e, q_l, next_overlap.

target_id, t_strand, t_s, t_e, t_l))

10

break

else:

"""

t_s t_e

-------------> next_frg

--------------------> cur_frg

q_s q_e

t_e t_s

<------------- next_frg

--------------------> cur_frg

q_s q_e

"""

next_overlap = cur_frg.best_5p_overlap

q_aln, t_aln = next_overlap.aln

q_strand, q_s, q_e, q_l = q_aln

t_strand, t_s, t_e, t_l = t_aln

c_s = q_e

seqs.append(cur_frg.seq[c_s:c_e])

path.append((direction, cur_orientation, cur_frg.id_, c_s, c_e,

next_overlap.query_id, q_strand, q_s, q_e, q_l, next_overlap.

target_id, t_strand, t_s, t_e, t_l))

#print "2:",c_s, c_e

if t_strand == 0:

c_e = t_e

else:

c_s = t_l - t_e

cur_orientation = reverse_orientation[cur_orientation]

elif cur_orientation == "<=":

if cur_frg.best_3p_overlap == None:

seqs.append(rev_cmp(cur_frg.seq[c_s:]))

path.append((direction, cur_orientation, cur_frg.id_, c_s, c_e,

next_overlap.query_id, q_strand, q_s, q_e, q_l, next_overlap.

target_id, t_strand, t_s, t_e, t_l))

break

else:

"""

t_e t_s

<----------------- next_frg

<-------------------- cur_frg

q_e q_s

t_s t_e

-----------------> next_frg

<-------------------- cur_frg

q_e q_s

11

"""

next_overlap = cur_frg.best_3p_overlap

q_aln, t_aln = next_overlap.aln

q_strand, q_s, q_e, q_l = q_aln

t_strand, t_s, t_e, t_l = t_aln

c_e = q_s

seqs.append(rev_cmp(cur_frg.seq[c_s:c_e]))

path.append((direction, cur_orientation, cur_frg.id_, c_s, c_e,

next_overlap.query_id, q_strand, q_s, q_e, q_l, next_overlap.

target_id, t_strand, t_s, t_e, t_l))

#print "4:",c_s, c_e

if t_strand == 0:

c_s = t_s

else:

c_e = t_l - t_s

cur_orientation = reverse_orientation[cur_orientation]

#print direction, next_overlap.query_id, next_overlap.target_id, next_overlap.aln

#print c_s, c_e

#if next_overlap.aln[1][0] == 1:

cur_orientation = reverse_orientation[cur_orientation]

cur_frg = read_frgs[next_overlap.target_id]

if cur_frg.id_ in visited:

break

if direction == "5p":

seqs.reverse()

return "".join(seqs), path

The two utility funtions below are defined for loading the sequence data into the
SequenceFragment objects and outputing the split read fasta file.

def load_seq(frgs, fasta_fn):

f = FastaIO.FastaReader(fasta_fn)

for r in f:

if r.name in frgs:

frgs[r.name].seq = r.sequence

def output_split_reads(split_reads, contained_reads, fasta_fn, out_fn):

f = FastaIO.FastaReader(fasta_fn)

included = split_reads - contained_reads

with open(out_fn, "w") as out:

for r in f:

if r.name in included:

print >> out, ">"+r.name

print >> out, r.sequence

12

Calling the funtions get contained or split reads from m4() and
get unique ovlp reads from m4() defined above provide all necessary data for assembly.
The split reads are output to a fasta file.

pread_fn = "preads.fa"

aln_m4_fn = "pr_pr_strigent.m4"

output_prefix = "asm"

split_reads, contained_reads = get_contained_or_split_reads_from_m4(aln_m4_fn, 4, 100)

uniq_ovlp_reads = get_unique_ovlp_reads_from_m4(aln_m4_fn, split_reads, contained_reads

, 4, 100)

load_seq(uniq_ovlp_reads, pread_fn)

output_split_reads(split_reads, contained_reads, pread_fn, output_prefix+"_split.fa")

We first scan through the overlapping information of each fragment. If a fragment only has
three-prime or five-prime overlap, we put them into the seeds list which contains fragements used
as “seeds” for contructing contigs by simple extension. We also sort these “seeds” by the fragment
length. We will start to extend to construct contigs from the longest seed.

seeds = []

all_reads = set()

for read_id, read_frg in uniq_ovlp_reads.items():

all_reads.add(read_id)

#print ctg_id, ctg_frg.best_5p_overlap, ctg_frg.best_3p_overlap

if read_frg.best_5p_overlap == None and read_frg.best_3p_overlap != None:

seeds.append((len(read_frg.seq), read_id, read_frg, "3p"))

if read_frg.best_3p_overlap == None and read_frg.best_5p_overlap != None:

seeds.append((len(read_frg.seq), read_id, read_frg, "5p"))

seeds.sort(reverse=True)

Here is the main loop to contruct contigs. It first goes through all seed sequences and contruct
contigs using the function get path(). After that, it will try to contruct contigs using those reads
that are not yet in any contigs. This way, we will use all non-split and non-contained reads to
construt contigs. The assembled utitigs are in asm.fa.

visited = set()

ctg_id = 0

ctg_layout_fn = output_prefix + ".lay"

ctg_layout = open(ctg_layout_fn, "w")

with open(output_prefix + ".fa","w") as f:

for read_len, read_id, read_frg, direction in seeds:

if read_id not in visited:

seq, path = get_path(uniq_ovlp_reads, read_frg, direction=direction, visited =

visited)

if len(seq) < 200:

continue

print >>f, ">ctg_%06d" % ctg_id

print >>f, seq

13

print >> ctg_layout, ">ctg_%06d" % ctg_id

for p in path:

print >> ctg_layout, " ".join([str(c) for c in p])

ctg_id += 1

for read_id in all_reads - visited:

if read_id not in visited:

read_frg = uniq_ovlp_reads[read_id]

seq, path = get_path(uniq_ovlp_reads, read_frg, direction="3p", visited =

visited)

if len(seq) < 200:

continue

print >>f, ">ctg_%06d_s" % ctg_id

print >>f, seq

print >> ctg_layout, ">ctg_%06d_s" % ctg_id

for p in path:

print >> ctg_layout, " ".join([str(c) for c in p])

ctg_id += 1

print >> ctg_layout, "#", all_reads - visited, len(uniq_ovlp_reads)

ctg_layout.close()

1.7 Check Out The Assembly Results

Here we show the assembly summary statistics. We get pretty good N50 = 953.7 kb. The total size
of the assembly is 23.3 Mb, which is very close to the reference.

%%bash

~/bin/PBJelly_12.7.25/summarizeAssembly.py asm.fa

Scaffold Stats

#Seqs 487

Min 202

1st Qu. 466

Median 1180

Mean 47981

3rd Qu. 3456

Max 1899581

Total 23367177

n50 953696

n90 99851

n95 41702

====================

Contig Stats

#Seqs 487

Min 202

1st Qu. 466

Median 1180

Mean 47981

3rd Qu. 3456

Max 1899581

14

Total 23367177

n50 953696

n90 99851

n95 41702

====================

Gap Stats

No Gaps!

====================

It is interesting to see what percentage of reads are classified as “split”.

%%bash

grep -c ">" preads.fa

grep -c ">" asm_split.fa

105869

707

Only about 707/105869 = 0.668% of reads are split. This says the simple logic to separate “easy
to assemble” potion of reads from the “diffculte to assemble” potion is quite efficient even in this
genome, which is almost 80% AT. Why? The fundementals here are when the reads are getting
long, most of the overlapping of the reads is not confounded by shorter repeats. We can easily
assemble a large amount of the genome without worrying about those shorter repeats. In other
words, it is quite possible to use a simple algorithm to get very good assembly when the reads are
very long.

How does the result look like comparing to the Plasmodium 3D7 refrenece? We can use nucmer

to do a genome-wide alignment to check the results.

nucmer -mum PlasmoDB-9.2_Pfalciparum3D7_Genome.fasta asm.fa -p genome_wide_aln

We can use mummerplot to compare the assembly from the alignment result:

!mummerplot -t png -l -fat -f genome_wide_aln.delta -p genome_wide_aln

Image(filename = "genome_wide_aln.png")

gnuplot 4.2 patchlevel 6

Writing filtered delta file out.filter

Reading delta file out.filter

Writing plot files out.fplot, out.rplot

Writing gnuplot script out.gp

Rendering plot out.png

15

As one can see from the alignment above, the assembly is already very good in term of contiguity.
The largest chromosome is bascially covered by two contigs.

At this stage, we might need some data, e.g. fosmid ends or physical mapping, for longer range
information to improve the assembly. Once the longer range helps to resolve the order of the contigs,
we will be able to unambigiously place reads back in the gaps. After the gap-filling step, we can then
apply the Quiver consensus algorithm to get better accuracy at the end of the assembly process.

For Research Use Only. Not for use in diagnostic procedures. (C) Copyright 2013, Pacific Biosciences of California, Inc. All rights reserved.
Information in this document is subject to change without notice. Pacific Biosciences assumes no responsibility for any errors or omissions
in this document. Certain notices, terms, conditions and/or use restrictions may pertain to your use of Pacific Biosciences products and/or
third party products. Please refer to the applicable Pacific Biosciences Terms and Conditions of Sale and to the applicable license terms at
http://www.pacificbiosciences.com/licenses.html. Pacific Biosciences, the Pacific Biosciences logo, PacBio, SMRT and SMRTbell are trademarks of
Pacific Biosciences in the United States and/or certain other countries. All other trademarks are the sole property of their respective owners.

16

