Fibrillated Cellulose and Block Copolymers as a Modifiers of Unsaturated Polyester Nanocomposites

Daniel H. Builes, Hugo Hernández, Laida Cano, Agnieszka Tercjak

Polymeric and Renewable Materials Technological Development Center

Madrid, May 20 2014

Aim of this Work

To establish a pathway for mechanical isolation of cellulose nanofibrils from sisal fibers and to employ them as reinforcement of unsaturated polyester thermosets in order to produce a nanocomposite material with improved mechanical properties and high transparency

PARTS OF THE PRESENTATION

1. INTRODUCTION

2. Modification of an unsaturated polyester matrix with the PEO-*b*-PPO-*b*-PEO block copolymer $E_{20}P_{69}E_{20}$ (EPE20)

3. Preparation of sisal microfibrillated cellulose (MFC)

4. Nanocomposites based on unsaturated polyester and microfibrillated cellulose (MFC)

5. CONCLUSIONS

INTRODUCTION

Oligomer of Unsaturated Polyester (UPol)

Unsaturated Polyester Resin (UP)

An UP resin is a mixture of UPol with styrene

Cristalán® 860: Orthophtalic UP resin with 36 wt % of St Manufactured by Andercol S.A.

Curing Process

Curing process of UP resin is a free-radical chain polymerization, exothermic and inhomogeneous process

UP resin

Growth of chains

Cyclization of chains

Phase separation (microgels formation)

Microgel-Microgel Crosslinking (Percolation)

Block Copolymers (BCP)

A BCP is produced linking by covalent bonds two or more homopolymers thermodynamically incompatible to create a novel macromolecule with hybrid properties

PS-*b*-PI-*b*-PEO triblock copolymer

INTRODUCTION

PEO miscibility with UP resins is higher than the PPO miscibility

Universidad del País Vasco Unibertsitatea

PARTS OF THE PRESENTATION

1. INTRODUCTION

2. Modification of an unsaturated polyester matrix with the PEO-*b*-PPO-*b*-PEO block copolymer $E_{20}P_{69}E_{20}$ (EPE20)

3. Preparation of sisal microfibrillated cellulose (MFC)

4. Nanocomposites based on unsaturated polyester and microfibrillated cellulose (MFC)

5. CONCLUSIONS

Mixtures Before Curing (non-reactive mixtures)

Visual appearance of non-reactive mixtures compared with neat UP resin at room temperature LCST behaviour of UP/EPE20 mixtures

Builes, D. H. et al *Polymer* 53, 3669 (2012)

Dynamic Light Scattering (DLS)

10

Dynamic Light Scattering (DLS)

Sample without particles

Dynamics of Nonreactive Mixtures (DLS) Mixtures of UP + EPE20

Autocorrelation fuction vs EPE20 content

Autocorrelation fuction vs Temperaure

Differential Scanning Calorimetry (DSC) Nonreactive mixtures of UP + EPE20

Cured Mixtures

Dynamical Mechanical Analysis (DMA)

Group "Materials + Technologies"

andercol s.a.

15

Unibertsitatea

del País Vasco

Universidad Euskal Herriko del País Vasco Unibertsitatea

Group "Materials + Technologies"

16

Neat UP Morphology (AFM)

Universidad Euskal Herriko del País Vasco Unibertsitatea

Mixtures Morphology (AFM) (cured at $T \ge 60 \ ^{\circ}C$)

Builes, D. H. et al ACS Appl Mater Interfaces 6, 1073 (2014)

Mixtures Morphology (AFM)

(cured at 25 °C)

Builes, D. H. et al J Phys Chem C 117, 3563 (2013)

Group "Materials + Technologies"

19

PARTS OF THE PRESENTATION

1. INTRODUCTION

2. Modification of an unsaturated polyester matrix with the PEO*b*-PPO-*b*-PEO block copolymer $E_{20}P_{69}E_{20}$ (EPE20)

3. Preparation of sisal microfibrillated cellulose (MFC)

4. Nanocomposites based on unsaturated polyester and microfibrillated cellulose (MFC)

5. CONCLUSIONS

Cellulose Fibers as Reinforcement

- Sustainability
- Hierarchical structure
- Low density
- Recyclability
- Biodegradability
- Good mechanical properties: (elastic modulus from 130 to 250 GPa in the crystalline regions)
- Renewability

Hierarchical Structure

Group "Materials + Technologies"

23

Homogenization Technique

Aqueous suspensions sisal cellulose fibers during homogenization process after several passes

Number of passes: 10 40 60 100 120

Size Monitoring (Optical Micrographs) Cellulose fibers during mechanical homogenization process

Microfibrillated Sisal Fibers (AFM)

5 Mm x 5 Mm

$1 \; \text{Mm} \; x \; 1 \; \text{Mm}$

Group "Materials + Technologies"

26

PARTS OF THE PRESENTATION

1. INTRODUCTION

2. Modification of an unsaturated polyester matrix with the PEO-*b*-PPO-*b*-PEO block copolymer $E_{20}P_{69}E_{20}$ (EPE20)

3. Preparation of sisal microfibrillated cellulose (MFC)

4. Nanocomposites based on unsaturated polyester and microfibrillated cellulose (MFC)

5. CONCLUSIONS

Hydrodynamic Diameter (DLS)

Universidad Euskal Herriko del País Vasco Unibertsitatea

Two different thermosetting systems based on UP resin were prepared:

1. **UP** + 1 wt % MFC

2. UP + (1 wt % MFC + 5 wt % EPE20)

UP+MFC

Optical Micrographs of Cured Samples

Transparency

Ultraviolet-visible Spectroscopy (UV-vis)

Morphology (AFM)

Neat UP

UP + 5 wt % EPE20

UP + 1 wt % MFC + 5 wt % EPE20

MFC

Mechanical Properties

Fracture Surface

 Neat UP
 UP+ 5 wt % EPE20
 UP + 1 wt % MFC +

 5 wt % EPE20
 5 wt % EPE20

APPLICATIONS

Transparency is required

Transparency is not required

Group "Materials + Technologies"

35

CONCLUSIONS

- A block copolymer with structure $E_{20}P_{69}E_{20}$ (EPE20) was used as an effective nanostructuring agent to increase the toughness of a commercial UP resin
- Self-assembly mechanism was responsible for the nanostructuration of the UP resin modified with EPE20 block copolymer
- A new pathway to fabricate nanocomposites of UP/MFC/EPE20 was developed by means of a controlled nanostructure achieving appropriate an reinforcement/transparency balance

ACKNOWLEDGMENTS

□ To Andercol S.A.

□ To Group 'Materials + Technologies' (GMT) University of the Basque Country (UPV/EHU)

Publications

Builes, D. H.; Tercjak, A.; Mondragon, I.
 Polymer 53, 3669 (2012)

"Nanostructured Unsaturated Polyester Modified with Poly[(ethylene oxide)-*b*-(propylene oxide)-*b*-(ethylene oxide)] Triblock Copolymer"

 Builes, D. H.; Hernández, H.; Mondragon, I.; Tercjak, A. J Phys Chem C 117, 3563 (2013)

"Relationship between the Morphology of Nanostructured Unsaturated Polyesters Modified with PEO-*b*-PPO-*b*-PEO Triblock Copolymer and their Optical and Mechanical Properties"

 Builes, D. H.; Labidi, J.; Eceiza, A.; Mondragon, I.; Tercjak, A. Compos Sci Technol 89, 120 (2013)

"Unsaturated Polyester Nanocomposites Modified with Fibrillated Cellulose and PEO-b-PPO-b-PEO Block Copolymer"

 Builes, D.; Hernández-Ortiz, J. P.; Corcuera, M. A.; Mondragon, I.; Tercjak, A. *ACS Appl Mater Interfaces* 6, 1073 (2014)

"Effect of Poly(ethylene oxide) Homopolymer and Two Different Poly(ethylene oxide-b-poly(propylene oxide)-b-poly(ethylene oxide) Triblock Copolymers on Morphological, Optical, and Mechanical Properties of Nanostructured Unsaturated Polyester"

Thank you!

daniel.builes@andercol.com.co

