
EG UK Computer Graphics & Visual Computing (2014)
Rita Borgo, Wen Tang (Editors)

Fast and Simple Agglomerative

LBVH Construction

Ciprian Apetrei
University of Bucharest

Abstract

This paper continues the long-standing tradition of gradually improving the construction speed of spatial
acceleration structures using sorted Morton codes. Previous work on this topic forms a clear sequence where
each new paper sheds more light on the nature of the problem and improves the hierarchy generation phase in
terms of performance, simplicity, parallelism and generality. Previous approaches constructed the tree by firstly
generating the hierarchy and then calculating the bounding boxes of each node by using a bottom-up traversal.
Continuing the work, we present an improvement by providing a bottom-up method that finds each node’s parent
while assigning bounding boxes, thus constructing the tree in linear time in a single kernel launch. Also, our
method allows clustering the sorted points using an user-defined distance metric function.

Categories and Subject Descriptors (according to ACM CCS) : I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types

© The Eurographics Association 2014.
Email: ciprian.apetrei@gmail.com

1. Introduction

In the latest years, hierarchy construction methods have
received more and more attention and the developing of
the massive parallel computing allowed the construction
of various types of trees in real-time even for millions of
primitives. The need for real-time applications to process
non-rigid models undergoing deformations or topological
changes, fast broad-phase collision detection and particle
interaction has given rise to an extensive literature on fast
computation of BVHs optimized for these applications.

 Bounding volume hierarchies (BVHs) are currently the
most popular acceleration structures for GPU ray tracing
because they are simple to construct, have low memory
footprint and flexibility in adapting to temporal changes
in scene geometry allowing refitting in animations. Over
the last few years, ray tracing efficiency with BVHs has
been tremendously improved due to novel and highly
optimized traversal and constructions algorithms.

 The majority of parallel BVH constructions start by
sorting points along a space-filling curve and generating
the tree in a top-down manner and then using a bottom-up
algorithm for calculating the bounding boxes. In general,
there seems to be a bias that favors top-down builders
over other algorithms. Karras [Kar12] introduced a
parallel method to generate a radix tree which processed
each node independently and used it as a building block
for other types of trees. Agglomerative or bottom-up
clustering methods [WBK*08] and [GHF*13] aim to
build high-quality BVHs and are typically implemented
on the CPU using a greedy approach that selects at each
step the best pair of clusters and combines them into a
larger cluster.

 In this paper we propose an improvement over the
method proposed by [Kar12] by constructing the tree in
parallel in a single bottom-up traversal and choosing the
parent at each step while computing the bounding box.
The resulted tree is partitioned the same, is simple to

construct, faster and allows the use of a distance metric
function by which to choose the parent.

2. Background

The majority of implementations of BVHs are
constructed as described by Wald et al. [WBS07]: the
primitive list is sorted based on the centroids of the
AABBs. This ordered list is then split into two subsets
and for each of them a bounding box is created and
assigned. The process is then repeated recursively for
each subset. The first parallel linear BVH construction
method was introduced by Lauterbach et al. [LGS*09].
The method starts by assigning a Morton code to each
primitive’s barycenter or centroid, sorting them according
to the Morton codes and then constructing the hierarchy
by splitting where the highest bit differs between two
Morton codes. A Morton code can be computed by
mapping each coordinates to unit cube [0,1]3 relative to
the scene and interleaving each of the binary digits. The
algorithm consists of several dependent processing steps,
requires large temporary buffers, and is an order of
magnitude slower than e.g. sorting the Morton codes. The
algorithm was improved by Pantaleoni and Luebke
[PL10] and Garanzha et al. [GPM11] which generated the
hierarchy sequentially starting from the root, processing
each level in parallel.

 In 2012, Karras [Kar12] presented a fast method for
constructing BVHs, k-d trees and octrees on the GPU that
would be completely pointless on a single-core processor,
but leads to substantial gains in a parallel setting. The
algorithms generates all nodes of the tree simultaneously
in a fully data-parallel fashion, requires no temporary
storage, consists of a single fully parallelizable loop, and
executes roughly two orders of magnitude faster than
[LGS*09]. After construction, he used a parallel bottom-
up reduction algorithm to calculate the bounding boxes.
We aim to improve the method by using only the bottom-
up algorithm.

Apetrei / Fast and Simple Agglomerative LBVH Construction

© The Eurographics Association 2014.

 These methods are focused on tackling the problem of
animated scenes by trading BVH quality for increased
construction speed [AKL13]. The BVH quality achieved
by these methods falls short of the gold standard, which
makes them practical only when the expected number of
rays per frame is small. To allow different quality vs.
speed tradeoffs, these algorithms were combined with
slower algorithms that produce higher quality trees
resulting in hybrid methods or were used as a building
block for other algorithms [BHH13, KT13] which take an
existing low-quality BVH and modify it to match the
quality of the best top-down methods. While we do not
explicitly consider such methods in this paper, we believe
that our approach can be combined with any appropriate
high quality algorithm.

3. Binary Radix Tree Construction

A radix tree (also known as Patricia tree or radix trie or
compact prefix tree) is a binary tree which is built based
on the common prefixes of each key. In our case, keys
are represented as bit strings. Each leaf node contains a
single key and each internal node corresponds to the
longest common prefix of all the keys it covers. Splitting
a sequence of keys into two subsets summarizes to
finding the highest differing bit. A naive construction
algorithm would start partitioning the tree from the root
by finding the first differing bit and then creating the
child nodes and processing each child recursively.

 Karras [Kar12] introduced a novel binary radix tree
construction algorithm and used it as a building block for
other types of trees. In order to generate the hierarchy in
fully parallel fashion, the algorithm processes each node
independently and performs one binary search to find the
range of keys that each internal node covers and another
binary search to find the split point for every internal
node in the hierarchy. Then it uses a bottom-up traversal
algorithm for bounding box calculation where each
thread starts from a single leaf and advances toward the
root and every node calculates its bounding box by
looking at the bounding box of the children. To avoid
duplicate work, each internal node has an atomic flag
which prevents the first thread to enter and lets the
second one through.

 A binary radix tree is a compact tree in the sense every
node either has two children or none. Therefore, a binary
radix tree with n leaf nodes has n-1 internal nodes
corresponding to a split point between two keys. In our
approach we consider only ordered trees, where the keys
are sorted and each internal node covers a linear range of
keys.

Algorithm. In order to further optimize the construction
algorithm, what we want is to do both hierarchy
generation and bounding box calculation in a single
kernel launch. To achieve this, we must construct the tree
in a bottom-up fashion. What this means is that we start
from each key and progressively group them together into
larger and larger clusters until the root cluster containing
all the keys is formed.
 Similar to [Kar12], the basic idea is to utilize a specific
node layout to establish a connection between the indices
of internal nodes and the ranges of keys that they cover.
In the case of BVHs, [Kar12] uses the connection to
determine the children of each internal node in a separate
processing step, followed by a custom bottom-up
reduction algorithm to calculate the per-node AABBs.

Figure 1: Ordered binary radix tree. Leaf nodes are
numbered from 0 to 7 and internal nodes from 0 to 6.
Each leaf node contains a set of 4-bit keys in
lexicographical order. The numbers in the left and right
of each node represent the left and right ends of the
linear range of keys covered by that respective node. The
red lines between each key represent the index of the
highest differing bit.

 Our approach combines the two steps by tracking the
ranges of keys as a part of the bottom-up reduction and
using them to deduce the index of the parent node at each
step. Every leaf node covers a range of one key, and
every internal node merges the ranges of its children.

 We choose a node layout where each internal node i
will split the hierarchy between keys i and i+1. The split
point of an internal node is defined by the last key of its
left child and the first key of its right child. What this
implies is that the highest differing bit between the keys
covered by an internal node i will always be between
keys i and i+1 . In contrast to the method proposed by
[Kar12], where for each node he uses a binary search to
find the highest differing bit, in our layout this isn’t
necessary as we already know it.

 From a bottom-up construction point of view, for a
given node that covers keys [a,b], the node layout implies
that indices a-1 and b will correspond to ancestors of the
node and one of these ancestors will be its parent.

 The general idea of our method is that we can analyze
a split position of a given internal node to measure the
dissimilarity between two subtrees. Being a bottom-up
hierarchy construction, we start from each individual key
and use the split point as an indicator for which node to
choose as parent. To choose the parent, we define a
function δ(i) as the index of the highest differing bit
between the keys covered by node i. Because of the way
a radix tree is defined, δ(x) > δ(y) must be true if x is the
ancestor of y. Thus, we can conclude that the index of the
parent node is a-1 if δ(a-1) < δ(b), and b otherwise.

 Because we already know where the highest differing
bit is for each internal node, the δ function basically
represents a distance metric between two keys. Unlike the
δ used by [Kar12], we are interested in the index of the
highest differing bit and not the length of the common
prefix. In practice, logical xor can be used instead of
finding the index of the highest differing bit as we can
compare the numbers. The higher the index of the
differing bit, the larger the number.

 Let us assume that the leaf nodes and internal nodes
are stored in two separate arrays, L and I, the same way
as proposed by [Kar12]. Each leaf node stores exactly

 0
 0
 1
 0

 0
 0
 1
 1

 0
 1
 0
 0

 0
 1
 0
 1

 1
 0
 0
 0

 1
 1
 0
 0

 1
 1
 0
 1

 1
 1
 1
 1

0 1 4 5 6 7 3 2

1 4

3

5

6

0 0 1 1 2 2 3 3 4 4 5 5 6 7 6 7

0

0

0

1 2 3

3 4 7

7

6 5

7

5
0 2

Apetrei / Fast and Simple Agglomerative LBVH Construction

© The Eurographics Association 2014.

one key. The hierarchy construction starts from each leaf
node and walks towards the root by finding the parent at
each step. We process an internal node only after it has
both its children set. To find the parent of each node we
have to look at the nodes that split the hierarchy at the left
and right ends of the keys covered by the respective node.
We initially know that each leaf node Li covers the range
of keys [i,i]. As we described earlier, we look at the
internal nodes with the index i-1 and i and compare the
values returned by the δ function. The one with the
lowest value will be the parent because it splits the
hierarchy between two more similar clusters (subtrees)
than the other node. Because each parent merges the
ranges of its children, the current node will pass to the
parent the opposite range of the keys it covers. When we
reach an internal node the algorithm works in the same
way as we only need to know the range of keys it covers
in order to find the parent.

 In the figure, the only possible parent for L0 is I0. In the
case of L1, we compare δ(0) and δ(1) and find that δ(0)
has the smaller value and that means the parent is I0.
After finding at which end of the range of keys is the
parent, each node passes to their parent the opposite end.
So, L0 will pass 0 and L1 will pass 1. Now that we have
set the parent child relationship, the algorithm proceeds
to process internal node I0 where we know that it covers
the keys [0,1].

 GPU Implementation. We have used the parallel
bottom-up reduction presented by Karras [Kar12] to
implement the algorithm. The only addition is that
instead of knowing the parent by generating the hierarchy
beforehand, we determine it by using the range of keys it
covers.
 Because we can’t detect if all the leaves covered by a
given internal node are being processed by the same
thread block, the disadvantage is that we can’t reduce the
number of global atomics by using the faster shared
memory atomics.
 During construction, our algorithm needs two integers
per node to store the range of keys while [Kar12] needs
only one, to store the parent of each node for the bottom-
up traversal.

4. Overview

The algorithm for hierarchy construction can be
summarized in 3 steps: (1) The first step consists of
sorting the keys. (2) (Optional) We do a separate kernel
launch in order to calculate the δ function for each
internal node beforehand. We can choose what the δ
function will compute depending on the application
requirements. (3) We use a node layout where we
associate each internal node to a split point between two
keys. Then, we construct the hierarchy by starting from
each leaf node. Because we know that leafs covers a
single key, we can find the parent by choosing between
the two ancestors at the left and right of the key it covers.
We choose the parent according to the δ function that
indicates a distance metric between the two keys where
each internal node splits the hierarchy, the one with the
lower value is the parent. Each parent then merges the
ranges of its children and uses it in the same manner to
advance towards the root.
 By terminating the first thread that enters a node and
letting the second one through, each node is processed by
exactly one thread which leads to O(n) complexity.

1: def ChooseParent(Left, Right, currentNode)
2: If (Left = 0 or (Right != n and δ(Right) < δ(Left-1)))
3: then

4: parent ←δRight
5: InternalNodesparent.childA ←currentNode

6: RangeOfKeysparent.left ←Left

7: else

8: parent ←Left - 1

9: InternalNodesparent.childB ←currentNode

10: RangeOfKeysparent.right ←Right

Figure 2: Pseudocode for choosing the parent. Left and
Right represent the range of keys covered by the current
node. The root of the tree will be stored in the left child of
the n-th internal node, where n represents the size of the
key array.

 As presented by [Kar12] the radix tree construction
algorithm can be used as a building block for other types
of trees (e.g., BVH, k-d Tree, octree).

 Resulted Tree. By knowing the range of each leaf
node and implicitly two of its ancestors, the constructed
tree is similar to a threaded binary tree. A binary tree is
threaded by making all right child pointers that would
normally be null point to the inorder successor of the
node, and all left child pointers that would normally be
null point to the inorder predecessor of the node.

 Although we need the range of keys covered by each
node only during construction, they could have some
practical uses. For each node that covers a linear range of
keys [a,b], we can use the range to find the index of first
common ancestor between the current node and the nodes
that contain the keys that are before a or after b. The
right ancestors of each node are essentially equivalent to
recording the steps of a depth first traversal and are
similar with the escape links described by Toczek et al.
[TDS10] which used them to traverse the tree without
using a stack.

 As the index of each internal node corresponds to a
split between the keys covered by it, the layout of the
nodes is preferable considering data locality.

 Bounding Volume Hierarchy. The particularly
interesting aspect about this algorithm is that it allows
one to use an arbitrary distance metric for δ. This can be
advantageous because the LBVH construction method
can now be made independent of how we sort the points
by choosing an appropriate metric. For example, for each
internal node i, δ(i) could compute the surface area of the
two keys where the node splits the hierarchy. We can
then choose the parent in the same mode by comparing
the values returned by the δ function. Alternatively, we
can use the squared distance to compute the distance
between two centroids. In these cases, it proved better to
do a separate kernel launch where we compute the value
of δ corresponding to each internal node.

5. Results

To explore the performance of our algorithms, we have
implemented them in CUDA 6.0 along with the method
proposed by Karras [Kar12] and benchmarked their
performance on a NVIDIA GeForce 745M installed in a
laptop with 2.60 GHz Intel Core i5 CPU running
Windows 8.1.

Apetrei / Fast and Simple Agglomerative LBVH Construction

© The Eurographics Association 2014.

 Table 1 shows a breakdown of hierarchy construction
time for a set of test scenes. We have used the thrust
library to sort the keys for all methods and used 30-bit
Morton codes. The method presented by Karras has two
values, one representing the hierarchy construction and
the other one the bounding box calculation. Our radix tree
construction algorithm is implemented in a single kernel
launch. The last column is a variant of our hierarchy
building method which uses the squared distance between
centroids as the δ function. We first used a kernel launch
to precompute the squared distances and then another
kernel launch to create the hierarchy. The difference in
construction time between the method proposed by
Karras (Previous) and ours gradually increases with the
number of triangles. Both methods amount to less than
50% of the time required to sort the keys.

 Discussion. Our algorithm improves upon all aspects
of [Kar12]: it is strictly faster, produces an equivalent
hierarchy, consists of only a few lines of code, and opens
up new possibilities in terms of construction heuristics.
The contribution of this paper is the ultimate
simplification to the hierarchy generation step that
essentially removes it altogether. Because the algorithm
allows one to use an arbitrary distance metric for δ, it
could be adapted for a number of different applications
and this new freedom could be potentially used to
improve the tree quality.

References

[AKL13] Aila T., Karras T., Laine S. 2013. On Quality
Metrics of Bounding Volume Hierarchies. In Proc. High-
Performance Graphics 2013, 101-107. 2

[BHH13] Bittner H., Hapala M., Havran V. 2013. Fast
Insertion-Based Optimization of Bounding Volume
Hierarchies. In Computer Graphics Forum 32, 85–100. 2

[GHF*13] Gu Y., He Y., Fatahalian K., Blelloch G.
2013. Efficient BVH Construction via Approximate
Agglomerative Clustering. In Proc. High-Performance
Graphics 2013, 81-88.

[GPM11] Garanzha K., Panteleoni J., McAllister D. K.
2011. Simpler and faster HLBVH with work queues. In
Proc. High Performance Graphics 2011, 59-64. 1

[Kar12] Karras T. 2012. Maximizing parallelism in the
construction of BVHs, octrees, and k-d trees. InProc.
High Performance Graphics 2012, 33-37. 1, 2, 3, 4

[KT13] Karras T., Aila T. 2013. Fast Parallel
Construction of High-Quality Bounding Volume
Hierarchies. In Proc. High Performance Graphics 2013,
89-100. 2

[LGS*09] Lauterbach C., Garland M., Sengupta S.,
Luebke D., Manocha D. 2009. Fast bvh construction on
GPUs. In Computer Graphics Forum 28, 2 2009, 375-
384. 1

[PL10] Pantaleoni J., Luebke D. 2010. HLBVH:
Hierarchical LBVH construction for real-time ray tracing
of dynamic geometry. In Proc. High Performance
Graphics, 87–95. 1

[TDS10] Toczek T., Houzet D., Mancini S. 2010.
Efficient Stackless Ray Traversal for Bounding Sphere
Hierarchies with CUDA. International Conference on
Computational science 2010, Elsevier, 1. 3

Table 1: Construction time for Karras (Previous), our
method for radix tree construction and the BVH
construction method where we use the squared distance
to compute the distance metric in milliseconds. The
processing consists of sorting the Morton codes, building
the hierarchy and bounding box calculation.

[WBK*08] Walter B., Bala K., Kulkarni M., Pingali K.
2008. Fast agglomerative clustering for rendering. In
Proc. IEEE Symposium on Interactive Ray Tracing, 81–
86. 1

[WBS07] Wald I., Boulos S., Shirley P. 2007. Ray
Tracing Deformable Scenes using Dynamic Bounding
Volume Hierarchies. ACM Transactions on Graphics 26,
1. 1

Scene Sort Previous Radix
tree
(our)

Squared
distance
δ

Stanford Bunny
(69K tris)

14.9

1.78 4.53 5.56 0.85 4.74

Armadillo
(345K tris)

32.1

5.01 10.0 12.03 2.4 11.9

Skeleton Hand
(654k tris)

77.8

14.1 28.3 32.5 6.54 31.8

Stanford Dragon
(871K tris)

102 19.6 37.1 42.9 8.61 42.2

Happy Buddha
(1087K tris)

125

23.2 46.8 53.4 10.7 52.7

Turbine Blade
(1765K tris)

210

37.3 73.9 85.9 17.3 85.3

