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Abstract   
               
This paper continues the long-standing tradition of gradually improving the construction speed of spatial 
acceleration structures using sorted Morton codes. Previous work on this topic forms a clear sequence where 
each new paper sheds more light on the nature of the problem and improves the hierarchy generation phase in 
terms of performance, simplicity, parallelism and generality. Previous approaches constructed the tree by firstly 
generating the hierarchy and then calculating the bounding boxes of each node by using a bottom-up traversal. 
Continuing the work, we present an improvement by providing a bottom-up method that finds each node’s parent 
while assigning bounding boxes, thus constructing the tree in linear time in a single kernel launch. Also, our 
method allows clustering the sorted points using an user-defined distance metric function. 
 
Categories and Subject Descriptors (according to ACM CCS) : I.3.6 [Computer Graphics]: Methodology and 
Techniques—Graphics data structures and data types 
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1. Introduction 

In the latest years, hierarchy construction methods have 
received more and more attention and the developing of 
the massive parallel computing allowed the construction 
of various types of trees in real-time even for millions of 
primitives. The need for real-time applications to process 
non-rigid models undergoing deformations or topological 
changes, fast broad-phase collision detection and particle 
interaction has given rise to an extensive literature on fast 
computation of BVHs optimized for these applications. 

 Bounding volume hierarchies (BVHs) are currently the 
most popular acceleration structures for GPU ray tracing 
because they are simple to construct, have low memory 
footprint and flexibility in adapting to temporal changes 
in scene geometry allowing refitting in animations. Over 
the last few years, ray tracing efficiency with BVHs has 
been tremendously improved due to novel and highly 
optimized traversal and constructions algorithms.  

 The majority of parallel BVH constructions start by 
sorting points along a space-filling curve and generating 
the tree in a top-down manner and then using a bottom-up 
algorithm for calculating the bounding boxes. In general, 
there seems to be a bias that favors top-down builders 
over other algorithms. Karras [Kar12] introduced a 
parallel method to generate a radix tree which processed 
each node independently and used it as a building block 
for other types of trees. Agglomerative or bottom-up 
clustering methods [WBK*08] and [GHF*13] aim to 
build high-quality BVHs and are typically implemented 
on the CPU using a greedy approach that selects at each 
step the best pair of clusters and combines them into a 
larger cluster.  

 In this paper we propose an improvement over the 
method proposed by [Kar12] by constructing the tree in 
parallel in a single bottom-up traversal and choosing the 
parent at each step while computing the bounding box. 
The resulted tree is partitioned the same, is simple to 

construct, faster and allows the use of a distance metric 
function by which to choose the parent. 
 
2. Background 

The majority of implementations of BVHs are 
constructed as described by Wald et al. [WBS07]: the 
primitive list is sorted based on the centroids of the 
AABBs. This ordered list is then split into two subsets 
and for each of them a bounding box is created and 
assigned. The process is then repeated recursively for 
each subset. The first parallel linear BVH construction 
method was introduced by Lauterbach et al. [LGS*09]. 
The method starts by assigning a Morton code to each 
primitive’s barycenter or centroid, sorting them according 
to the Morton codes and then constructing the hierarchy 
by splitting where the highest bit differs between two 
Morton codes. A Morton code can be computed by 
mapping each coordinates to unit cube [0,1]3 relative to 
the scene and interleaving each of the binary digits. The 
algorithm consists of several dependent processing steps, 
requires large temporary buffers, and is an order of 
magnitude slower than e.g. sorting the Morton codes. The 
algorithm was improved by Pantaleoni and Luebke 
[PL10] and Garanzha et al. [GPM11] which generated the 
hierarchy sequentially starting from the root, processing 
each level in parallel.  

 In 2012, Karras [Kar12] presented a fast method for 
constructing BVHs, k-d trees and octrees on the GPU that 
would be completely pointless on a single-core processor, 
but leads to substantial gains in a parallel setting. The 
algorithms generates all nodes of the tree simultaneously 
in a fully data-parallel fashion, requires no temporary 
storage, consists of a single fully parallelizable loop, and 
executes roughly two orders of magnitude faster than 
[LGS*09]. After construction, he used a parallel bottom-
up reduction algorithm to calculate the bounding boxes. 
We aim to improve the method by using only the bottom-
up algorithm. 
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 These methods are focused on tackling the problem of 
animated scenes by trading BVH quality for increased 
construction speed [AKL13]. The BVH quality achieved 
by these methods falls short of the gold standard, which 
makes them practical only when the expected number of 
rays per frame is small. To allow different quality vs. 
speed tradeoffs, these algorithms were combined with 
slower algorithms that produce higher quality trees 
resulting in hybrid methods or were used as a building 
block for other algorithms [BHH13, KT13] which take an 
existing low-quality BVH and modify it to match the 
quality of the best top-down methods. While we do not 
explicitly consider such methods in this paper, we believe 
that our approach can be combined with any appropriate 
high quality algorithm. 
 
3. Binary Radix Tree Construction 

A radix tree (also known as Patricia tree or radix trie or 
compact prefix tree) is a binary tree which is built based 
on the common prefixes of each key. In our case, keys 
are represented as bit strings. Each leaf node contains a 
single key and each internal node corresponds to the 
longest common prefix of all the keys it covers. Splitting 
a sequence of keys into two subsets summarizes to 
finding the highest differing bit. A naive construction 
algorithm would start partitioning the tree from the root 
by finding the first differing bit and then creating the 
child nodes and processing each child recursively.  

 Karras [Kar12] introduced a novel binary radix tree 
construction algorithm and used it as a building block for 
other types of trees. In order to generate the hierarchy in 
fully parallel fashion, the algorithm processes each node 
independently and performs one binary search to find the 
range of keys that each internal node covers and another 
binary search to find the split point for every internal 
node in the hierarchy. Then it uses a bottom-up traversal 
algorithm for bounding box calculation where each 
thread starts from a single leaf and advances toward the 
root and every node calculates its bounding box by 
looking at the bounding box of the children. To avoid 
duplicate work, each internal node has an atomic flag 
which prevents the first thread to enter and lets the 
second one through. 

 A binary radix tree is a compact tree in the sense every 
node either has two children or none. Therefore, a binary 
radix tree with n leaf nodes has n-1 internal nodes 
corresponding to a split point between two keys. In our 
approach we consider only ordered trees, where the keys 
are sorted and each internal node covers a linear range of 
keys. 

Algorithm. In order to further optimize the construction 
algorithm, what we want is to do both hierarchy 
generation and bounding box calculation in a single 
kernel launch. To achieve this, we must construct the tree 
in a bottom-up fashion. What this means is that we start 
from each key and progressively group them together into 
larger and larger clusters until the root cluster containing 
all the keys is formed. 
 Similar to [Kar12], the basic idea is to utilize a specific 
node layout to establish a connection between the indices 
of internal nodes and the ranges of keys that they cover. 
In the case of BVHs, [Kar12] uses the connection to 
determine the children of each internal node in a separate 
processing step, followed by a custom bottom-up 
reduction algorithm to calculate the per-node AABBs.  

 
Figure 1: Ordered binary radix tree. Leaf nodes are 
numbered from 0 to 7 and internal nodes from 0 to 6. 
Each leaf node contains a set of 4-bit keys in 
lexicographical order. The numbers in the left and right 
of each node represent the left and right ends of the 
linear range of keys covered by that respective node. The 
red lines between each key represent the index of the 
highest differing bit. 

 Our approach combines the two steps by tracking the 
ranges of keys as a part of the bottom-up reduction and 
using them to deduce the index of the parent node at each 
step. Every leaf node covers a range of one key, and 
every internal node merges the ranges of its children.  

 We choose a node layout where each internal node i 
will split the hierarchy between keys i and i+1. The split 
point of an internal node is defined by the last key of its 
left child and the first key of its right child. What this 
implies is that the highest differing bit between the keys 
covered by an internal node i will always be between 
keys i and i+1 . In contrast to the method proposed by 
[Kar12], where for each node he uses a binary search to 
find the highest differing bit, in our layout this isn’t 
necessary as we already know it.  

 From a bottom-up construction point of view, for a 
given node that covers keys [a,b], the node layout implies      
that indices a-1 and b will correspond to ancestors of the 
node and one of these ancestors will be its parent. 

 The general idea of our method is that we can analyze 
a split position of a given internal node to measure the 
dissimilarity between two subtrees. Being a bottom-up 
hierarchy construction, we start from each individual key 
and use the split point as an indicator for which node to 
choose as parent. To choose the parent, we define a 
function δ(i) as the index of the highest differing bit 
between the keys covered by node i. Because of the way 
a radix tree is defined, δ(x) > δ(y) must be true if x is the 
ancestor of y. Thus, we can conclude that the index of the 
parent node is a-1 if δ(a-1) < δ(b), and b otherwise.  

 Because we already know where the highest differing 
bit is for each internal node, the δ function basically 
represents a distance metric between two keys. Unlike the 
δ used by [Kar12], we are interested in the index of the 
highest differing bit and not the length of the common 
prefix. In practice, logical xor can be used instead of 
finding the index of the highest differing bit as we can 
compare the numbers. The higher the index of the 
differing bit, the larger the number.  

 Let us assume that the leaf nodes and internal nodes 
are stored in two separate arrays, L and I, the same way 
as proposed by [Kar12]. Each leaf node stores exactly 
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one key. The hierarchy construction starts from each leaf 
node and walks towards the root by finding the parent at 
each step. We process an internal node only after it has 
both its children set. To find the parent of each node we 
have to look at the nodes that split the hierarchy at the left 
and right ends of the keys covered by the respective node. 
We initially know that each leaf node Li covers the range 
of keys [i,i]. As we described earlier, we look at the 
internal nodes with the index i-1 and i and compare the 
values returned by the δ function. The one with the 
lowest value will be the parent because it splits the 
hierarchy between two more similar clusters (subtrees) 
than the other node. Because each parent merges the 
ranges of its children, the current node will pass to the 
parent the opposite range of the keys it covers. When we 
reach an internal node the algorithm works in the same 
way as we only need to know the range of keys it covers 
in order to find the parent.  

 In the figure, the only possible parent for L0 is I0. In the 
case of L1, we compare δ(0) and δ(1) and find that δ(0) 
has the smaller value and that means the parent is I0. 
After finding at which end of the range of keys is the 
parent, each node passes to their parent the opposite end. 
So, L0 will pass 0 and L1 will pass 1. Now that we have 
set the parent child relationship, the algorithm proceeds 
to process internal node I0 where we know that it covers 
the keys [0,1]. 

 GPU Implementation. We have used the parallel 
bottom-up reduction presented by Karras [Kar12] to 
implement the algorithm. The only addition is that 
instead of knowing the parent by generating the hierarchy 
beforehand, we determine it by using the range of keys it 
covers. 
 Because we can’t detect if all the leaves covered by a 
given internal node are being processed by the same 
thread block, the disadvantage is that we can’t reduce the 
number of global atomics by using the faster shared 
memory atomics.  
 During construction, our algorithm needs two integers 
per node to store the range of keys while [Kar12] needs 
only one, to store the parent of each node for the bottom-
up traversal.  
 
4. Overview 

The algorithm for hierarchy construction can be 
summarized in 3 steps: (1) The first step consists of 
sorting the keys. (2) (Optional) We do a separate kernel 
launch in order to calculate the δ function for each 
internal node beforehand. We can choose what the δ 
function will compute depending on the application 
requirements. (3) We use a node layout where we 
associate each internal node to a split point between two 
keys. Then, we construct the hierarchy by starting from 
each leaf node. Because we know that leafs covers a 
single key, we can find the parent by choosing between 
the two ancestors at the left and right of the key it covers. 
We choose the parent according to the δ function that 
indicates a distance metric between the two keys where 
each internal node splits the hierarchy, the one with the 
lower value is the parent. Each parent then merges the 
ranges of its children and uses it in the same manner to 
advance towards the root. 
 By terminating the first thread that enters a node and 
letting the second one through, each node is processed by 
exactly one thread which leads to O(n) complexity. 

1: def ChooseParent(Left, Right, currentNode)  
2:        If ( Left = 0 or ( Right != n and δ(Right) < δ(Left-1) ) ) 
3:       then  

4:            parent ←δRight 
5:             InternalNodesparent.childA ←currentNode 

6:             RangeOfKeysparent.left ←Left 

7:       else 

8:            parent ←Left - 1 

9:            InternalNodesparent.childB ←currentNode  

10:          RangeOfKeysparent.right ←Right 

Figure 2: Pseudocode for choosing the parent. Left and 
Right represent the range of keys covered by the current 
node. The root of the tree will be stored in the left child of 
the n-th internal node, where n represents the size of the 
key array. 

 As presented by [Kar12] the radix tree construction 
algorithm can be used as a building block for other types 
of trees (e.g., BVH, k-d Tree, octree). 

 Resulted Tree. By knowing the range of each leaf 
node and implicitly two of its ancestors, the constructed 
tree is similar to a threaded binary tree. A binary tree is 
threaded by making all right child pointers that would 
normally be null point to the inorder successor of the 
node, and all left child pointers that would normally be 
null point to the inorder predecessor of the node.  

 Although we need the range of keys covered by each 
node only during construction, they could have some 
practical uses. For each node that covers a linear range of 
keys [a,b], we can use the range to find the index of first 
common ancestor between the current node and the nodes 
that contain the keys that are before a or after b.  The 
right ancestors of each node are essentially equivalent to 
recording the steps of a depth first traversal and are 
similar with the escape links described by Toczek et al. 
[TDS10] which used them to traverse the tree without 
using a stack. 

 As the index of each internal node corresponds to a 
split between the keys covered by it, the layout of the 
nodes is preferable considering data locality. 

 Bounding Volume Hierarchy. The particularly 
interesting aspect about this algorithm is that it allows 
one to use an arbitrary distance metric for δ. This can be 
advantageous because the LBVH construction method 
can now be made independent of how we sort the points 
by choosing an appropriate metric. For example, for each 
internal node i, δ(i) could compute the surface area of the 
two keys where the node splits the hierarchy. We can 
then choose the parent in the same mode by comparing 
the values returned by the δ function. Alternatively, we 
can use the squared distance to compute the distance 
between two centroids. In these cases, it proved better to 
do a separate kernel launch where we compute the value 
of δ corresponding to each internal node. 
 
5. Results 

To explore the performance of our algorithms, we have 
implemented them in CUDA 6.0 along with the method 
proposed by Karras [Kar12] and benchmarked their 
performance on a NVIDIA GeForce 745M installed in a 
laptop with 2.60 GHz Intel Core i5 CPU running 
Windows 8.1.  
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  Table 1 shows a breakdown of hierarchy construction 
time for a set of test scenes. We have used the thrust 
library to sort the keys for all methods and used 30-bit  
Morton codes. The method presented by Karras has two 
values, one representing the hierarchy construction and 
the other one the bounding box calculation. Our radix tree 
construction algorithm is implemented in a single kernel 
launch. The last column is a variant of our hierarchy 
building method which uses the squared distance between 
centroids as the δ function. We first used a kernel launch 
to precompute the squared distances and then another 
kernel launch to create the hierarchy. The difference in 
construction time between the method proposed by 
Karras (Previous) and ours gradually increases with the 
number of triangles. Both methods amount to less than 
50% of the time required to sort the keys. 

  Discussion. Our algorithm improves upon all aspects 
of [Kar12]: it is strictly faster, produces an equivalent 
hierarchy, consists of only a few lines of code, and opens 
up new possibilities in terms of construction heuristics.  
The contribution of this paper is the ultimate 
simplification to the hierarchy generation step that 
essentially removes it altogether. Because the algorithm 
allows one to use an arbitrary distance metric for δ, it 
could be adapted for a number of different applications 
and this new freedom could be potentially used to 
improve the tree quality.  
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Scene Sort  Previous Radix     
tree 
(our) 

Squared 
distance           
δ 

Stanford Bunny  
(69K tris) 

14.9 
 

1.78  4.53 5.56 0.85  4.74 

Armadillo 
(345K tris) 

32.1 
 

5.01  10.0 12.03 2.4    11.9 

Skeleton Hand 
(654k tris) 

77.8 
 

14.1  28.3 32.5 6.54  31.8 

Stanford Dragon 
(871K tris) 

102 19.6  37.1 42.9 8.61  42.2 

Happy Buddha 
(1087K tris) 

125 
 

23.2  46.8 53.4 10.7  52.7 

Turbine Blade 
(1765K tris) 

210 
 

37.3  73.9    85.9 17.3  85.3 


