EG UK Computer Graphics & Visual Computing (2014)
Rita Borgo, Wen Tang (Editors)

Fast and Simple Agglomer ative

LBVH Construction

Ciprian Apetrei
University of Bucharest

Abstract

This paper continues the long-standing tradition gphdually improving the construction speed of &dat
acceleration structures using sorted Morton cod@®vious work on this topic forms a clear sequewbere
each new paper sheds more light on the natureeptbblem and improves the hierarchy generationsghia
terms of performance, simplicity, parallelism arghgrality.Previous approaches constructed the tree by firstly
generating the hierarchy and then calculating tleifding boxes of each node by using a bottom-uetsal.
Continuing the work, we present an improvementrbyiging a bottom-up method that finds each nogesent
while assigning bounding boxes, thus constructirg ttee in linear time in a single kernel launchsd our
method allows clustering the sorted points usingiser-defined distance metric function.

Categories and Subject Descript@escording to ACM CCS). 1.3.6 [Computer Graphics]: Methodology and

Techniques—Graphics data structures and data types

1. Introduction

In the latest years, hierarchy construction methualge
received more and more attention and the developing
the massive parallel computing allowed the consizoc
of various types of trees in real-time even forlionls of
primitives. The need for real-time applicationsptocess
non-rigid models undergoing deformations or topmab
changes, fast broad-phase collision detection anticfe
interaction has given rise to an extensive litaatn fast
computation of BVHs optimized for these application

Bounding volume hierarchies (BVHSs) are currertty t
most popular acceleration structures for GPU ragitig
because they are simple to construct, have low memo
footprint and flexibility in adapting to temporahanges
in scene geometry allowing refitting in animatio®er
the last few years, ray tracing efficiency with B¥Has
been tremendously improved due to novel and highly
optimized traversal and constructions algorithms.

The majority of parallel BVH constructions stary b
sorting points along a space-filling curve and gatieg
the tree in a top-down manner and then using aimettp
algorithm for calculating the bounding boxes. Imgel,
there seems to be a bias that favors top-down drsild
over other algorithms. KarrasK@rl? introduced a
parallel method to generate a radix tree which ggeed
each node independently and used it as a buildimgkb
for other types of trees. Agglomerative or bottom-u
clustering methods\WBK*08] and [GHF*13] aim to
build high-quality BVHs and are typically implement
on the CPU using a greedy approach that seleaacht
step the best pair of clusters and combines theéman
larger cluster.

In this paper we propose an improvement over the
method proposed byKpr1l2 by constructing the tree in
parallel in a single bottom-up traversal and chogghe
parent at each step while computing the bounding bo
The resulted tree is partitioned the same, is @nipl

© The Eurographics Association 2014,
Email: ciprian.apetrei@gmail.com

construct, faster and allows the use of a distanegic
function by which to choose the parent.

2. Background

The majority of implementations of BVHs are
constructed as described by Wald et &I/B[S07: the
primitive list is sorted based on the centroids tioé
AABBs. This ordered list is then split into two Sats
and for each of them a bounding box is created and
assigned. The process is then repeated recursively
each subset. The first parall@hear BVH construction
method was introduced by Lauterbach et BG$*09).
The method starts by assigning a Morton code td eac
primitive’s barycenter or centroid, sorting thentaling

to the Morton codes and then constructing the rcesa
by splitting where the highest bit differs betwesvo
Morton codes. A Morton code can be computed by
mapping each coordinates to unit cube forgative to
the scene and interleaving each of the binary digihe
algorithm consists of several dependent processtigys,
requires large temporary buffers, and is an order o
magnitude slower than e.g. sorting the Morton codlee
algorithm was improved by Pantaleoni and Luebke
[PL1Q and Garanzha et alGPM11 which generated the
hierarchy sequentially starting from the root, @sging
each level in parallel.

In 2012, KarrasKar1Z presented a fast method for
constructing BVHSs, k-d trees and octrees on the @Rt
would be completely pointless on a single-core essor,
but leads to substantial gains in a parallel sgttifthe
algorithms generates all nodes of the tree simetasly
in a fully data-parallel fashion, requires no temgug
storage, consists of a single fully parallelizalolep, and
executes roughly two orders of magnitude fasten tha
[LGS*09]. After construction, he used a parallel bottom-
up reduction algorithm to calculate the boundingédso
We aim to improve the method by using only the drott
up algorithm.

Apetrei / Fast and Simple Agglomerative LBVH Carction

These methods are focused on tackling the probfem
animated scenes by trading BVH quality for increase
construction speedAKL13]. The BVH quality achieved
by these methods falls short of the gold standahich
makes them practical only when the expected nuraber
rays per frame is small. To allow different qualitg.
speed tradeoffs, these algorithms were combineéi wit
slower algorithms that produce higher quality trees
resulting in hybrid methods or were used as a mgld
block for other algorithmsgHH13, KT13] which take an
existing low-quality BVH and modify it to match the
quality of the best top-down methods. While we ad n
explicitly consider such methods in this paper,bebeve
that our approach can be combined with any appatpri
high quality algorithm.

3. Binary Radix Tree Construction

A radix tree (also known as Patricia tree or radis or
compact prefix tree) is a binary tree which is bhadsed

on the common prefixes of each key. In our casgs ke
are represented as bit strings. Each leaf nodeaicena
single key and each internal node corresponds @¢o th
longest common prefix of all the keys it coverslit8pg

a sequence of keys into two subsets summarizes to
finding the highest differing bit. A naive consttion
algorithm would start partitioning the tree fronethoot

by finding the first differing bit and then creaiirthe
child nodes and processing each child recursively.

Karras Karl2 introduced a novel binary radix tree
construction algorithm and used it as a buildinzchlfor
other types of trees. In order to generate theahtty in
fully parallel fashion, the algorithm processesheaode
independently and performs one binary search tbtfie
range of keys that each internal node covers anthan
binary search to find the split point for everyeimtal
node in the hierarchy. Then it uses a bottom-ugetsal
algorithm for bounding box calculation where each
thread starts from a single leaf and advances thures
root and every node calculates its bounding box by
looking at the bounding box of the children. To idvo
duplicate work, each internal node has an atonag fl
which prevents the first thread to enter and Iéts t
second one through.

A binary radix tree is a compact tree in the sengzy
node either has two children or none. Therefotgnary
radix tree withn leaf nodes has-1 internal nodes
corresponding to a split point between two keysoim
approach we consider only ordered trees, wheré&edie
are sorted and each internal node covers a liregerof
keys.

Algorithm. In order to further optimize the construction
algorithm, what we want is to do both hierarchy
generation and bounding box calculation in a single
kernel launch. To achieve this, we must constrhuetitee
in a bottom-up fashion. What this means is thatsteet
from each key and progressively group them togettter
larger and larger clusters until the root clustantaining
all the keys is formed.

Similar to Kar12, the basic idea is to utilize a specific
node layout to establish a connection betweenritiees
of internal nodes and the ranges of keys that toeer.
In the case of BVHs,KarlZ uses the connection to
determine the children of each internal node ie@asate
processing step, followed by a custom bottom-up
reduction algorithm to calculate the per-node AABBs

Figure 1. Ordered binary radix tree. Leaf nodes are
numbered from O to 7 and internal nodes from 0 .to 6
Each leaf node contains a set of 4-bit keys in
lexicographical order. The numbers in the left aight

of each node represent the left and right endshef t
linear range of keys covered by that respectiveendthe
red lines between each key represent the indeheof t
highest differing bit.

Our approach combines the two steps by trackieg th
ranges of keys as a part of the bottom-up reductiush
using them to deduce the index of the parent nbéach
step. Every leaf node covers a range of one keg, an
every internal node merges the ranges of its anildr

We choose a node layout where each internal node
will split the hierarchy between keyandi+1. The split
point of an internal node is defined by tlst keyof its
left child and thefirst key of its right child. What this
implies is that the highest differing bit betwede tkeys
covered by an internal nodewill always be between
keysi andi+1. In contrast to the method proposed by
[Karld, where for each node he uses a binary search to
find the highest differing bit, in our layout thisn't
necessary as we already know it.

From a bottom-up construction point of view, for a
given node that covers keyalj], the node layout implies
that indicesa-1 andb will correspond to ancestors of the
node and one of these ancestors will be its parent.

The general idea of our method is that we canyaeal
a split position of a given internal node to meastire
dissimilarity between two subtrees. Being a bottgm-
hierarchy construction, we start from each indiaidkey
and use the split point as an indicator for whicldento
choose as parent. To choose the parent, we define a
function &(i) as the index of the highest differing bit
between the keys covered by nod8ecause of the way
a radix tree is defined(x) > o(y) must be true if x is the
ancestor of y. Thus, we can conclude that the irdeke
parent node ia-1if d(a-1) <6(b), andb otherwise.

Because we already know where the highest differin
bit is for each internal node, th® function basically
represents a distance metric between two Kégbke the
o used by KarlZ, we are interested in the index of the
highest differing bit and not the length of the coan
prefix. In practice, logical xor can be used indtesf
finding the index of the highest differing bit a®wan
compare the numbers. The higher the index of the
differing bit, the larger the number.

Let us assume that the leaf nodes and internaésnod
are stored in two separate arralysandl, the same way
as proposed byKjarlZ. Each leaf node stores exactly

© The Eurographics Association 2014.

Apetrei / Fast and Simple Agglomerative LBVH Carction

one key. The hierarchy construction starts fromhdeaf
node and walks towards the root by finding the paet
each step. We process an internal node only dfteas
both its children set. To find the parent of eacdenwe
have to look at the nodes that split the hieraatthe left
and right ends of the keys covered by the respeaibde.
We initially know that each leaf node tovers the range
of keys |,i]. As we described earlier, we look at the
internal nodes with the indexd andi and compare the
values returned by thé function. The one with the
lowest value will be the parent because it splis t
hierarchy between two more similar clusters (su@sye
than the other node. Because each parent merges the
ranges of its children, the current node will p&sghe
parent the opposite range of the keys it coverseihe
reach an internal node the algorithm works in tame
way as we only need to know the range of keysvers

in order to find the parent.

In the figure, the only possible parent fgrig lp. In the
case of L, we compared(0) andd(1) and find tha(0)
has the smaller value and that means the pareht is
After finding at which end of the range of keystfe
parent, each node passes to their parent the dppmEs.
So, Lywill pass 0 and Lwill pass 1. Now that we have
set the parent child relationship, the algorithrocgeds
to process internal nodgwhere we know that it covers
the keys [0,1].

GPU Implementation. We have used the parallel
bottom-up reduction presented by Karrasafl?d to
implement the algorithm. The only addition is that
instead of knowing the parent by generating theanidy
beforehand, we determine it by using the rangeegtkt
covers.

Because we can't detect if all the leaves covéned
given internal node are being processed by the same
thread block, the disadvantage is that we canticedhe
number of global atomics by using the faster shared
memory atomics.

During construction, our algorithm needs two ietegy
per node to store the range of keys whifarflZ needs
only one, to store the parent of each node fobtittom-
up traversal.

4. Overview

The algorithm for hierarchy construction can be
summarized in 3 steps: (1) The first step consits
sorting the keys. (2) (Optional) We do a separaiendd
launch in order to calculate th& function for each
internal node beforehand. We can choose whatdthe
function will compute depending on the application
requirements. (3) We use a node layout where we
associate each internal node to a split point betvwe/o
keys. Then, we construct the hierarchy by startiogn
each leaf node. Because we know that leafs covers a
single key, we can find the parent by choosing betw
the two ancestors at the left and right of the kepvers.
We choose the parent according to théunction that
indicates a distance metric between the two keysrevh
each internal node splits the hierarchy, the ornté e
lower value is the parent. Each parent then metiges
ranges of its children and uses it in the same eratm
advance towards the root.

By terminating the first thread that enters a nadd
letting the second one through, each node is psedesy
exactly one thread which leads to O(n) complexity.

© The Eurographics Association 2014.

1: def ChooseParent(Left, Right, currentNode)

2 If (Left = Oor (Right !=nand &(Right) < o(Left-1)))
3 then

4 parent— oRight

5: InternalNodgsenchildA — currentNode

6 RangeOfKeysenleft — Left

7 else

8 parent-Left - 1

9 InternalNodgsenchildB — currentNode

10: RangeOfKeygenright — Right

Figure 2: Pseudocode for choosing the parent. Left and
Right represent the range of keys covered by thesicu
node. The root of the tree will be stored in tHedaild of
the n-th internal node, where n represents the sizbe
key array.

As presented byKarl? the radix tree construction
algorithm can be used as a building block for otlypes
of trees (e.g., BVH, k-d Tree, octree).

Resulted Tree. By knowing the range of each leaf
node and implicitly two of its ancestors, the consted
tree is similar to a threaded binary tree. A bintieg is
threadedby making all right child pointers that would
normally be null point to the inorder successortloé
node, and all left child pointers that would noripdie
null point to the inorder predecessor of the node.

Although we need the range of keys covered by each
node only during construction, they could have some
practical uses. For each node that covers a lieae of
keys fa,b], we can use the range to find the index of first
common ancestor between the current node and ttesno
that contain the keys that are befarer afterb. The
right ancestors of each node are essentially elguivvéo
recording the steps of a depth first traversal anel
similar with the escape links described by Toczekle
[TDS1g which used them to traverse the tree without
using a stack.

As the index of each internal node correspondsa to
split between the keys covered by it, the layouthsf
nodes is preferable considering data locality.

Bounding Volume Hierarchy. The particularly
interesting aspect about this algorithm is thagliows
one to use an arbitrary distance metricdomhis can be
advantageous because the LBVH construction method
can now be made independent of how we sort thetgoin
by choosing an appropriate metric. For examplegfarh
internal node, d(i) could compute the surface area of the
two keys where the node splits the hierarchy. We ca
then choose the parent in the same mode by congparin
the values returned by thefunction. Alternatively, we
can use the squared distance to compute the distanc
between two centroids. In these cases, it provéerh®
do a separate kernel launch where we compute the va
of & corresponding to each internal node.

5. Results

To explore the performance of our algorithms, weeha
implemented them in CUDA 6.0 along with the method
proposed by KarrasKarl2d and benchmarked their
performance on a NVIDIA GeForce 745M installed in a
laptop with 2.60 GHz Intel Core i5 CPU running
Windows 8.1.

Apetrei / Fast and Simple Agglomerative LBVH Carction

Table 1 shows a breakdown of hierarchy conswuocti
time for a set of test scenes. We have used thestthr
library to sort the keys for all methods and useB
Morton codes. The method presented by Karras has tw
values, one representing the hierarchy constructiah
the other one the bounding box calculation. Ouixrade
construction algorithm is implemented in a singériel
launch. The last column is a variant of our hidngrc
building method which uses the squared distancsdsst
centroids as thé& function. We first used a kernel launch
to precompute the squared distances and then anothe
kernel launch to create the hierarchy. The diffeeem
construction time between the method proposed by
Karras (Previous) and ours gradually increases thi¢h
number of triangles. Both methods amount to less th
50% of the time required to sort the keys.

Discussion. Our algorithm improves upon all aspects
of [Karld: it is strictly faster, produces an equivalent
hierarchy, consists of only a few lines of code] apens
up new possibilities in terms of construction hstics.
The contribution of this paper is the ultimate
simplification to the hierarchy generation step ttha
essentially removes it altogeth@decause the algorithm
allows one to use an arbitrary distance metric &oit
could be adapted for a number of different appibecet
and this new freedom could be potentially used to
improve the tree quality.

References

[AKL13] Aila T., Karras T., Laine S. 2013. On Qugli
Metrics of Bounding Volume Hierarchies. In ProcghH
Performance Graphics 2013, 101-197.

[BHH13] Bittner H., Hapala M., Havran V. 2013. Fast
Insertion-Based Optimization of Bounding Volume
Hierarchies. In Computer Graphics Forum 32, 85—-200.

[GHF*13] Gu Y., He Y., Fatahalian K., Blelloch G.
2013. Efficient BVH Construction via Approximate
Agglomerative Clustering. In Proc. High-Performance
Graphics 2013, 81-88.

[GPM11] Garanzha K., Panteleoni J., McAllister D. K
2011. Simpler and faster HLBVH with work queues. In
Proc. High Performance Graphics 2011, 59464.

[Karl2] Karras T. 2012. Maximizing parallelism ihet
construction of BVHs, octrees, and k-d trees. IoPro
High Performance Graphics 2012, 33-372, 3, 4

[KT13] Karras T., Aila T. 2013. Fast Parallel
Construction of High-Quality Bounding Volume
Hierarchies. In Proc. High Performance Graphics3201
89-100.2

[LGS*09] Lauterbach C., Garland M., Sengupta S.,
Luebke D., Manocha D. 2009. Fast bvh construction o
GPUs. In Computer Graphics Forum 28, 2 2009, 375-
384.1

[PL10] Pantaleoni J., Luebke D. 2010. HLBVH:
Hierarchical LBVH construction for real-time rayting
of dynamic geometry. In Proc. High Performance
Graphics, 87-95L

[TDS10] Toczek T., Houzet D., Mancini S. 2010.
Efficient Stackless Ray Traversal for Bounding Sphe
Hierarchies with CUDA. International Conference on
Computational science 2010, Elsevier31.

Scene Sort | Previous | Radix | Sgquared
tree distance
(our) | d

Stanford Bunny | 14.9 | 1.78 453 | 5.56 0.85 4.74

(69K tris)

Armadillo 32.1|5.01 10.0| 12.03| 24 11.

(345K tris)

Skeleton Hand 778 | 141 28.3| 325 6.54 31.4

(654K tris)

Stanford Dragon | 102 19.6 37.1| 429 8.61 42.2

(871K tris)

Happy Buddha 125 | 23.2 46.8| 53.4 10.7 52.7

(1087K tris)

Turbine Blade 210 | 37.3 73.9| 85.9 17.3 85.3

(1765K tris)

Table 1: Construction time for Karras (Previous), our
method for radix tree construction and the BVH
construction method where we use the squared distan
to compute the distance metric in milliseconds. The
processing consists of sorting the Morton codedidimg

the hierarchy and bounding box calculation.

[WBK*08] Walter B., Bala K., Kulkarni M., Pingali K
2008. Fast agglomerative clustering for rendering.
Proc. IEEE Symposium on Interactive Ray Tracing; 81
86.1

[WBSO07] Wald 1., Boulos S., Shirley P. 2007. Ray
Tracing Deformable Scenes using Dynamic Bounding
Volume Hierarchies. ACM Transactions on Graphics 26
1.1

© The Eurographics Association 2014.

