
BumbleBee: A Refactoring Environment for Spreadsheet
Formulas

Felienne Hermans
Delft University of Technology

Mekelweg 4
Delft, the Netherlands

f.f.j.hermans@tudelft.nl

Danny Dig
Oregon State University
2500 NW Monroe Ave

Corvallis, OR, US
digd@eecs.oregonstate.edu

ABSTRACT
Spreadsheets are widely used in industry. It is estimated
that end-user programmers outnumber regular programmers
by a factor of 5. However, spreadsheets are error-prone: sev-
eral reports exist of companies that have lost big sums of
money due to spreadsheet errors. In previous work, spread-
sheet smells have proven to be the cause of some of these
errors.

To that end, we have developed a tool that can apply
refactorings to spreadsheet formulas, implementing our pre-
vious work on spreadsheet refactoring, which showed that
spreadsheet formula smells are very common and that refac-
torings for them are widely applicable and that refactoring
them with a tool is both quicker and less error-prone.

Our new tool Bumblebee is able to execute refactorings
originating from both these papers, by means of an extensi-
ble syntax, and can furthermore apply refactorings on entire
groups of formulas, thus improving upon the existing tool
RefBook. Finally, BumbleBee can also execute transforma-
tions other than refactorings.

Categories and Subject Descriptors
H.4.1 [Information Systems Applications]: Office Au-
tomation—Spreadsheets

General Terms
Experimentation, Languages

Keywords
spreadsheets, transformation, end-user programming

1. INTRODUCTION
Spreadsheets are very important to today’s society: it

is estimated that end-users outnumber professional devel-
opers[3]. Their use is diverse, ranging from inventory ad-
ministration to educational applications and from scientific

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE’14 , November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

modeling to financial systems, a domain in which their use
is particularly prevailing. Panko [4] estimates that 95% of
U.S. firms, and 80% in Europe, use spreadsheets in some
form for financial reporting.

However, the use of spreadsheets is not without problems:
Panko [5] studied seven different field audits into spreadsheet
errors and showed that 86% of spreadsheets contain at least
one error.

In previous work [13], we have seen that spreadsheet users
are quite similar to software developers. They struggle with
similar problems, such as under-documented, long living
artifacts that switch owner frequently, diminishing under-
standability. One of those problems is the occurrence of
‘spreadsheet smells’, very similar to the smells described by
Martin Fowler [14].

In order to relieve code smells, the idea of refactoring was
introduced. A refactoring is a change to source code that
improves the quality, but does not change its behavior. In
this paper we describe BumbleBee, a tool that is able to ex-
ecute refactorings and other transformations on spreadsheet
formulas.

In addition to performing the transformations, we also
provide a method to locate formulas in which transforma-
tions could be applied, thus helping the user to find formulas
that could be refactored. BumbleBee is available for down-
load1.

2. BACKGROUND
In previous work, we have seen that end-users understand

smells in spreadsheets [1, 13] and that they prefer refactored
versions of formulas [2]. This lays ground for a more research
on spreadsheet formula refactoring.

In our previous spreadsheet refactoring implementation
Refbook [2], the refactoring rules are programmatically de-
fined. This means they are not easy to adapt or extend, not
by the tool’s designers, let alone by the tool’s users.

With our new tool BumbleBee, we take a more general
approach, in which the refactorings can be described in a
language, which is based on spreadsheet formula syntax.
This enables us to describe a large st of refactorings and
also allows spreadsheet users to modify and write their own
version of refctorings.

3. TRANSFORMATION LANGUAGE
In this section we describe the BumbleBee grammar, the

language that we use to describe transformations to be ap-

1http://www.felienne.com/BumbleBee

plied on spreadsheet formulas. This language builds upon
the grammar for Excel formulas [8], which we adapt slightly
by modifying and adding a few production rules.

Firstly, a transformation rule in the BumbleBee grammar
consists of two Excel formulas combined with a ”↔”, indicat-
ing that those two formulas may be transformed into each
other. An example of this is

A1+A2+A3 ↔ SUM(A1:A3).

Furthermore, our language adds a selected set of variables
to indicate a transformation is limited to a certain formula
construct. F represents a Formula, R represents a Range, C
represents a Cell and P represents a constant. These trans-
formations can be applied if the formula it is applied to has
exactly that construct on the place of the variable. For ex-
ample

SUM(R)/COUNT(R) ↔ AVERAGE(R)

This rule indicates transforming a SUM over any range
divided by a count over the same range into the average of
that range.

Furthermore, the BumbleBee grammar permits parametrized
references to cells. This allows for variables in places where
the original Excel grammar only contains cells. These vari-
able cell references have the form {i,j} An example of this is

{i,j} + {i,j+1} ↔ SUM({i,j}:{i,j+1})

This indicates that all formulas that add two cells, whose
columns are the same and rows differ by one, can be rewrit-
ten into a SUM and vice versa.

Finally, we allow for referencing cells in connected groups.
This expression represents all cells between the arguments
before and after it. An example of that is

{i,j} + ... + {m,n} ↔ SUM({i,j}:{m,n})

With this rule, we could, for instance, transform A1+A2+
B1+B2 into SUM(A1:B2). Note that, while we list transfor-
mations that are refactorings here, our BumbleBee grammar
can just as well be used to describe transformations which
are not behavior preserving.

4. DESCRIBING REFACTORINGS
Now that we have defined the transformation language, we

use it to describe refactorings from our previous work, show-
ing that BumbleBee is able to express them [1, 2]. Note that
the language as we have currently defined it only supports
intra-formula refactorings. These are refactorings which
take place within one cell, such as A1+A2 ↔ SUM(A1:A2).

The counterpart of intra-formula refactorings are inter-
formula refactorings: refactorings that result in changes to
multiple cells. An example of this is the ‘extract column’
refactoring in [2], with which part of a formula is placed in a
new cell. The implementation of intra-formula refactorings
is left for future work.

The remainder of this section describes how refactorings
from our earlier work can be expressed in BumbleBee.

4.1 Replace Awkward Formula
The ‘replace awkward formula’ refactoring aims to replace

a complex formula with a built-in function in order to sim-
plify it. In [2] two such ‘awkward formulas’ transformations
were described: refactoring plus into SUM and times into
PRODUCT. With the BumbleBee grammar, we can expand
the set of transformations to other commonly used Excel
functions.

To demonstrate the expressiveness of the BumbleBee gram-
mar, we will use it to describe the ten most commonly used
function in the EUSES corpus [9]. This corpus contains real-
life spreadsheets from 11 different domains and has been
used by several researchers to evaluate spreadsheet algo-
rithms, among which [10] and [11]. Barowy et al. [12] per-
formed an analysis on the EUSES corpus to find the 10 most
common functions. They are, in order of frequency: SUM,
MIN, AVERAGE, MAX, PRODUCT, MATCH, OFFSET,
VLOOKUP, INDEX, and CONCATENATE.

For these top ten functions, we define refactorings with
our language. Some of the functions in the top ten are well
known calculation functions, for which it is easy to define a
corresponding refactoring:

• {i,j} + ... + {i,k} ↔ SUM({i,j}:{i,k}

• IF(F1>F2,F1,F2) ↔ MIN(F1,F2)

• IF(F1>F2,F1,F2) ↔ MAX(F1,F2)

• SUM(R1)/COUNT(R1) ↔ AVERAGE(R1)

• {i,j} * ... * {m,n} ↔ PRODUCT({i,j}:{m,n}

• {i,j} & ... & {m,n} ↔ CONCATENATE({i,j}:{m,n}

Some of these functions or combinations of them are equiv-
alent: VLOOKUP can be rewritten with a combination of
INDEX and MATCH, while OFFSET can be replaced by
INDEX. This leads to the following refactorings.

• INDEX(C1:C2, V1, V2) ↔ OFFSET(C1,V1-1,V2-1)

• VLOOKUP(F, {i,j}:{m,n}, V) ↔
INDEX({i+V-1,j}:{i+V-1,n},MATCH(F, {i,j}:{i,n})

With this, we have expressed the ‘replace awkward for-
mula’ refactoring from [2] for the most popular 10 Excel
functions using the BumbleBee grammar.

4.2 Guard Call
Badame and Dig [2] furthermore describe the ‘guard call’

refactoring, which adds a guard to a formula to prevent it
from resulting in an error. Badame and Dig only provide a
refactoring to guard divisions by zero, written here in our
new syntax:

• F1/F2 ↔ IF(F2<>0,F1/F2, “Value unknown”)

With the BumbleBee grammar, we can easily describe
additional guard refactorings. For instance, the LOOKUP
functions can result in an error when the value that was
searched for has not been found. The INDEX function too
can result in an error, if the values to look for are out of
the bounds of the range. Therefore, adding an IFERROR
around these formulas increases the robustness of the spread-
sheet.

• VLOOKUP(F, C1:C2, V)↔ IFERROR(VLOOKUP(F,
C1:C2, V), “Value not found”)

• INDEX(C1:C2, V1, V2) ↔ IFERROR(INDEX(C1:C2,
V1, V2), “Out of bounds”)

4.3 Group References
Previous work by Hermans et al. [1] too described intra-

formula refactorings. Firstly, there is the ‘group references’
refactoring, which can be expressed in the BumbleBee gram-
mar as follows:

• SUM({i,j},...,{m,n}) ↔ SUM({i,j}:{m,n})

4.4 Merge Branches
Secondly, there is the ‘merge branches’ refactoring that

can be used to simplify conditional formulas. This transfor-
mation too is expressible in BumbleBee grammar.

• IF(F1, F3, IF(F2, F3,F4)) ↔ IF(OR(F1, F2), F3,F4)

5. TOOL DESIGN
Our current approach for transforming spreadsheet formu-

las is implemented as an add-in for Excel 2010. It uses our
existing spreadsheet analysis framework Breviz[6, 13] as a
basis for reading, parsing and analyzing the formulas. Bum-
bleBee is implemented in C# and F# using Visual Studio
2013.

Currently, the user interface offers the following options:

• Find applicable formulas for a selected cell

• Get a dropdownbox with the possible transformations,
when selecting one, the user gets a preview of the
transformed formula

• Apply this transformation in the selected range, in the
entire worksheet or the entire file

When a user selects a transformation and a formula, Bum-
bleBee parses them, and subsequently applies pattern match-
ing to determine whether a transformation rule is applicable
on a formula.

Figure 1: Screenshot of the current BumbleBee im-
plementation in Excel 2010. The options for trans-
formation of cell B12 are shown in the dropdown
box, and the preview field shows the selected trans-
formation applied to B12.

6. RELATED WORK
Efforts related to our research include work on source code

refactoring, most prominently the work of Fowler [14].
Furthermore, there is work on the improvement of spread-

sheet, such as the work on spreadsheet design guidelines.
Raffensberger [15], for instance advises to merge references
that occur only once. He furthermore states that unneces-
sary complex formulas with many operations and parenthe-
sis should be rewritten. Rajalingham et al. [16] also propose
guidelines to improve spreadsheet quality, which they base
on principles of software engineering. Secondly, there are pa-
pers that address spreadsheets errors, like [17, 5], together
with their causes. Powell et al. for instance [18] names
conditional formulas among the top three of commonly oc-
curring spreadsheet error categories.

There is also related work on finding anomalies on spread-
sheets, for instance the work on the UCheck tool [19, 20,
21]. UCheck determines the type of cells, and locates pos-
sible anomalies based on this type system. UCheck uses a
similar visualization, with colors in the spreadsheet, to in-
dicate found anomalies. Their follow up work on debugging
of spreadsheets [22] also suggests corrections for errors and
is as such related to our current research, as it is focused on
maintaining existing spreadsheets.

Spreadsheet testing too has been a subject of interest for
some time. Most prominently, there is the “What You See Is
What You Test” methodology by Rothermel et al., who have
created [23] and subsequently validated [24] a method to
support end-users in defining and analyzing tests for spread-
sheets.

This paper can be seen as overarching both [13] and [2],
because it is a more general method for formula transfor-
mation: refactorings can be described with rules and are
not embedded in the tool. Furthermore, the BumbleBee ap-
proach is not necessarily aimed at refactoring, but can also
be applied to other transformations, such as migration or
changing business rules.

7. DISCUSSION
The current implementation of BumbleBee, while still a

prototype, supports spreadsheet users in updating their spread-
sheet formulas in a consistent way. In this section, we discuss
a variety of issues that affect the applicability and suitability
of the proposed approach.

7.1 Transformations Impacting Multiple Cells
The BumbleBee grammar as it is currently defined, only

supports changes within one formula. While this is certainly
useful, it would be even better to extend the BumbleBee
grammar to be able to also transform formulas over multiple
cells. This, of course, has its challenges, as inserting cells
might have consequences for the entire spreadsheet.

7.2 Definition of the Transformation Rules
In the current approach, we as language builders have

also defined the transformation rules. While this is useful
for generic transformations, such as refactoring or migration
formulas, we cannot provide rules for all possible changing
business rules. BumbleBee allows for users to describe their
own rules, but since spreadsheet users are not professional
trained developers, only a very small set of ‘power users’
will be able to do so. This diminishes the applicability of
our tool, specifically for the scenario in which business rules

change. One of the plausible solutions for this is to derive
transformation rules from changes a user makes to a spread-
sheet. This is one of the most useful directions for future
work we see.

8. CONCLUDING REMARKS
This paper describes BumbleBee: a tool that can be used

to define and execute transformations on spreadsheet formu-
las. We have used the newly defined language to describe
all refactorings in our previous work, showing it is as expres-
sive. Furthermore, BumbleBee can be used for other types
of transformations, including migrating spreadsheets to new
version of Excel and updating formulas in case of changing
requirements.

The key contributions of this paper are as follows:

• A language to describe spreadsheet formula transfor-
mations (Section 3)

• The demonstrated use of this language to describe
refactorings (Section 4)

• An implementation into the BumbleBee tool (Section
5)

The current research gives rise to several directions for fu-
ture work. Firstly, empirical studies on the usefulness of our
approach is needed, especially in regards to benefits for error
reduction. Also, more studies are needed to test the appli-
cability of BumbleBee on industry-sized spreadsheets. Sec-
ondly, it would be useful to expand the BumbleBee grammar
to incorporate transformations which impact multiple cells
and transformations that modify the structure of a spread-
sheet. Finally, a method to automatically extract the trans-
formation rules from edits by users would greatly improve
usability of BumbleBee, as rules will not have to be entered
manually anymore.

9. REFERENCES
[1] F. Hermans, M. Pinzger, and A. van Deursen,

“Detecting code smells in spreadsheet formulas,” in
Proc of ICSM ’12, 2012, pp. 409–418.

[2] S. Badame and D. Dig, “Refactoring meets spreadsheet
formulas,” in Proc. of ICSM ’12, 2012, pp. 399–409.

[3] C. Scaffidi, M. Shaw, and B. A. Myers, “Estimating
the numbers of end users and end user programmers,”
in Proc. of VL/HCC ’05, 2005, pp. 207–214.

[4] R. Panko, “Facing the problem of spreadsheet errors,”
Decision Line, vol. 37, no. 5, 2006.

[5] R. R. Panko, “What we know about spreadsheet
errors,” Journal of End User Computing, vol. 10,
no. 2, pp. 15–21, 1998.

[6] F. Hermans, M. Pinzger, and A. van Deursen,
“Supporting professional spreadsheet users by
generating leveled dataflow diagrams,” in Proc. of
ICSE ’11, 2011, pp. 451–460.

[7] J. Sajaniemi, “Modeling spreadsheet audit: A rigorous
approach to automatic visualization,” 2000.

[8] S. Badame, “Refactoring meets spreadsheet formulas,”
Master’s thesis, University of Illinois at
Urbana-Champaign, 21012.

[9] M. Fisher and G. Rothermel, “The EUSES
spreadsheet corpus: a shared resource for supporting

experimentation with spreadsheet dependability
mechanisms,” ACM SIGSOFT Software Engineering
Notes, vol. 30, no. 4, pp. 1–5, 2005.

[10] R. Abraham and M. Erwig, “Inferring templates from
spreadsheets,” in Proc. of ICSE ’06, 2006, pp. 182–191.

[11] J. Cunha, J. Saraiva, and J. Visser, “Discovery-based
edit assistance for spreadsheets,” in Proc. of VL/HCC
’09, 2009, pp. 233–237.

[12] D. W. Barowy, D. Gochev, and E. D. Berger, “Data
debugging,” University of Massachusetts, Amherst,
Tech. Rep. UM-CS-2012-033.

[13] F. Hermans, M. Pinzger, and A. van Deursen,
“Detecting and visualizing inter-worksheet smells in
spreadsheets,” in Proc of ICSE ’12, 2012, pp. 441–451.

[14] M. Fowler, Refactoring: improving the design of
existing code. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1999.

[15] J. Raffensperger, “New guidelines for spreadsheets,”
International Journal of Business and Economics,
vol. 2, pp. 141–154, 2009.

[16] K. Rajalingham, D. Chadwick, B. Knight, and
D. Edwards, “Quality control in spreadsheets: a
software engineering-based approach to spreadsheet
development,” in Proc. HICSS ’00, 2000, pp. 133–143.

[17] Y. Ayalew, M. Clermont, and R. T. Mittermeir,
“Detecting errors in spreadsheets,” in Proc. of
EuSpRIG ’00, 2000, pp. 51–62.

[18] S. Powell, K. Baker, and B. Lawson, “Errors in
operational spreadsheets: A review of the state of the
art,” in Proc. of HICCS ’09. IEEE Computer Society,
2009, pp. 1–8.

[19] R. Abraham and M. Erwig, “Ucheck: A spreadsheet
type checker for end users,” Journal of Visual
Languages and Computing, vol. 18, pp. 71–95, 2007.

[20] C. Chambers and M. Erwig, “Automatic detection of
dimension errors in spreadsheets,” Journal of Visual
Languages and Computing, vol. 20, pp. 269–283, 2009.

[21] M. Erwig, “Software engineering for spreadsheets,”
IEEE Software, vol. 26, pp. 25–30, September 2009.

[22] R. Abraham and M. Erwig, “Goaldebug: A
spreadsheet debugger for end users,” in Proc. of ICSE
’07, 2007, pp. 251–260.

[23] G. Rothermel, “Testing strategies for form-based visual
programs,” in Proc. of ISSRE ’97, 1997, pp. 96–107.

[24] K. J. Rothermel, C. R. Cook, M. M. Burnett,
J. Schonfeld, T. R. G. Green, and G. Rothermel,
“Wysiwyt testing in the spreadsheet paradigm: an
empirical evaluation,” in Proc. of INCSE ’00, 2000,
pp. 230–239.

[25] M. Burnett, A. Sheretov, B. Ren, and G. Rothermel,
“Testing homogeneous spreadsheet grids with the
”what you see is what you test” methodology,” IEEE
Trans. Softw. Eng., vol. 28, no. 6, pp. 576–594, June
2002. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2002.1010060

[26] F. Hermans, M. Pinzger, and A. van Deursen,
“Automatically extracting class diagrams from
spreadsheets,” in Proc. of ECOOP ’10, 2010, pp.
52–75.

