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Abstract

The location of individual turbines within a tidal current turbine array – micro-
siting – can have a significant impact on the power that the array may extract
from the flow. Due to the infancy of the industry and the challenges of exploiting
the resource, the economic costs of realising industrial scale tidal current energy
projects are significant and should be considered as one of the key drivers of
array design. This paper proposes a framework for the automated design of
tidal current turbine arrays in which costs over the lifespan of the array may
be modelled and considered as part of the design optimisation process. To
demonstrate this approach, the cost of sub-sea cabling is incorporated by im-
plementing a cable-routing algorithm alongside an existing gradient-based array
optimisation algorithm. Three idealised test scenarios are used to demonstrate
the effects of a financial-return optimising design approach as contrasted with
a power maximisation approach.

Keywords: marine renewable energy, tidal turbines, gradient-based
optimisation, adjoint method, shallow water equations, array layout,
cable-routing, financial-return

1. Introduction

Tidal current turbines are devices which convert the momentum of tidally
induced ocean currents into electricity. Much as with wind power, several in-
dividual turbines may be formed into an array to yield power on an industrial
scale. Determining the optimum location of turbines within an array – micro-
siting – is an issue of critical importance, on which the viability of the project
may hinge. Rapid spatial variations in current flow speed can be caused by
complex bathymetry and the presence of the turbines themselves. Since the
power extraction of a turbine is dependent upon the cube of that flow speed,
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optimisation of the micro-siting design is a complex and challenging problem.
Funke et al. (2014) have demonstrated in test scenarios that such micro-siting
optimisation has the potential to increase the power extracted by an array by
33 % as compared to an array of the same number of turbines arranged in a
rectangular grid.

Just as power production is dependent on the turbine micro-siting design,
so too may certain costs be dependent on turbine location. These location-
dependent costs, such as the cost of cabling, water depth or difficulty of instal-
lation, may have just as great an impact on the project viability and must be
considered in the design process. As noted by Thomson et al. (2011), there
has been a general focus across the renewables industry on design optimisation
based solely on energy yield. The goal of this paper is to develop a more holistic
approach to array design which balances both energy yield and cost, and thus
enables array developers to maximise their overall return on investment.

For this work, sub-marine cabling costs have been chosen as an example
location-based cost. In offshore wind projects, connection costs typically rep-
resent 18 – 20% of the capital cost of a project (Lumbreras and Ramos, 2011;
Quinonez-Varela et al., 2007). Research into the cost of elements of tidal current
power installations has suggested that these costs may be similarly significant,
and the largest cost affected by micro-siting design (Allan et al., 2011). Nega-
tive wake interactions between turbines may motivate the spacing of turbines –
where lease area allows – far apart from each other and conditions may result
in higher flow velocities out in the main channel away from land. However, as
spacing between turbines and distance from shore increases, so too does the
cost of the cabling required to connect the turbines to the power grid. Thus
the requirement to minimise the cost associated with increased cable length will
likely be a competing factor to maximising power output.

The contribution of this paper is a novel method of optimising turbine micro-
siting design, which integrates evaluation and consideration of both costs and
benefits. Cable length minimisation and power-extraction maximisation are
integrated and optimised using an efficient gradient-based algorithm. This ap-
proach requires fewer iterations than alternate (for example genetic algorithm)
approaches meaning that a more computationally expensive (and therefore more
accurate / realistic) prediction model may be used.

In the following section, the array micro-siting design optimisation problem is
formulated mathematically, and it is shown how the financial return is a function
of incomes – such as power extracted by the array, and costs – such as the length
of cabling required to connect the turbines. In section 3, OpenTidalFarm, a
code developed by Funke et al. (2014), is presented as a method to optimise the
array layout to maximise the power extraction of the array, using the shallow
water equations and a gradient-based optimisation approach. In section 4 the
cable routing problem is outlined, and previous work in tackling it is explored.
The problem is mathematically formulated and it is shown that the proposed
integration into a gradient-based framework is valid. In section 5, a model
is developed for this application leading to section 6 in which the challenges of
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integrating the OpenTidalFarm and cable routing models are examined. Finally
the approach is demonstrated on idealised test-cases in section 7.

2. Problem Formulation

The overall goal of this work is to optimise the financial return over the array
lifespan, Rfin, for the developer of an array of n tidal turbines located within a
bounded site – the ‘turbine area’.

The domain is modelled in two-dimensional Cartesian space and the coordi-
nates of the turbine locations are encoded in a 2n-long vector, m, where

m = (x1, y1, x2, y2, . . . , xn, yn)T .

Rfin is considered to be a function of m and is therefore maximised through
adjusting the turbine locations,

max
m

Rfin(m). (1)

In order to obtain a framework through which cost and income models can
be integrated in a modular fashion, Rfin is expressed as the sum of income
functions and cost functions. For example (1) may be expressed as

max
m

IP (P (m))− CC(L(m)), (2)

where P (m) is the power extracted from the flow by the turbines, IP : R→ R
maps power output to financial income, L(m) is the total length of sub-sea
cabling required to connect the turbines to base stations on the shore, and
CC : R → R maps cable length to financial cost. Both P and L can implicitly
be written as functions of m when it is understood that for a given array
configuration (m), the evaluation of P will involve the solution of a problem
describing the tidal dynamics and evaluation of L involves the solution of a
routing optimisation problem. Further details on the functions IP and CC used
in (2) may be found in section 6.

Models which evaluate a physical quantity, such as power extracted by the
array, or the length of sub-sea cabling required to service it, can thus be included
if functions can be identified which map those physical quantities into a financial
dimension.

In a general setting, there might be additional location-based cost function-
als, such as installation depth, which could be incorporated in a similar fashion
as the cable cost, but these are not considered here. For this work, these (and
all other costs) are assumed to be constant.

3. OpenTidalFarm

An approach to maximising the power production, P (m), has been devel-
oped by Funke et al. (2014). This method is packaged in the open-source code
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OpenTidalFarm, and will be summarised here for completeness. OpenTidalFarm
solves an optimisation problem constrained by the shallow water equations:

max
m

P (m)

subject to bl ≤m ≤ bu

g(m) ≤ 0.

(3)

The bounds bl ≤m ≤ bu constrain the turbines to the turbine area (in this case
rectangular in shape, for simplicity) and the inequality constraint, g(m) ≤ 0,
implements a minimum distance spacing constraint between adjacent turbines.
Turbines are modelled as distinct areas of increased friction, and at each op-
timisation iteration the performance of the turbine layout is evaluated as the
power extracted by the turbines,

P (m) =

∫
Ω

ρct(m)||u||3 dx, (4)

where ρ is the fluid density, ct(m) is the enhanced friction of the parametrised
turbines, and u is the velocity of the flow which, along with the free-surface
displacement, η, is the solution to the steady-state shallow water equations

u · ∇u− ν∇2u + g∇η +
cb + ct(m)

H
||u||u = 0,

∇ · (Hu) = 0.
(5)

Here, ν is the viscosity coefficient, g is the acceleration due to gravity, H is
the total water depth and cb represents a constant background bottom friction.
Note that P (m) is a function of m both directly through ct(m) and through
the solution of the shallow water equations, u(m). In this paper we consider
only the steady-state shallow water model, however this can be generalised to
the unsteady case.

The shallow water equations are solved using the finite element method on
a triangular mesh and the Taylor-Hood element pair (Taylor and Hood, 1973).
The derivative of the power production with respect to the turbine locations,
dP/dm, is computed by solving the adjoint shallow water equations (Funke
et al., 2014). Based upon both P and dP/dm, the locations of the turbines,
m is improved for the next iteration using a gradient-based optimisation algo-
rithm. The optimisation algorithm used is a variation on sequential quadratic
programming, SLSQP which is packaged as part of SciPy (Jones et al., 2001)
and outlined in Kraft (1988). For the purposes of this work, SLSQP, is treated
as a black box producing an improved m based upon previous functional and
gradient evaluations. The OpenTidalFarm optimisation loop is outlined in fig-
ure 1.

A key advantage of this approach is the use of the adjoint equations, since it
enables the gradient dP/dm to be determined at a computational cost that is
independent of the number of turbines, n. (Technically, the adjoint is computed
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Figure 1: Schematic of the OpenTidalFarm optimisation procedure.

at an independent cost, while the gradient requires matrix multiplication of the
adjoint with another matrix, both of whose size varies with n – however, this
cost is negligible for the sizes of n that are realistically under consideration).
The accessibility of the gradient permits the use of a gradient-based optimisa-
tion algorithm. The iteration numbers for these algorithms are also observed to
be independent of the number of turbines (Funke et al., 2014), and very small
compared to genetic algorithms (Barnett et al., 2014). Therefore optimisation
of even a large number of turbines is feasible. Clearly the benefit of this ap-
proach is the scalability with number of turbines. In addition, since so few
iterations are required, each iteration can be more computationally expensive.
This means that a more realistic flow model may be used to capture the complex
hydrodynamics more accurately.

The computational economy of the gradient-based optimisation is at the
heart of the OpenTidalFarm approach. Therefore any additional (cost) model to
be integrated into this framework must be able to interface with a gradient based
approach and be reasonably efficient to evaluate. More precisely it must be a
differentiable map m ∈ R2n → R, which characterises the cost of the array with
regard to the turbine positions in terms of a single scalar value, and have the
gradient efficiently computable. To demonstrate how this may be achieved even
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for complicated cost models, sub-sea cabling costs have been selected for this
paper. Integration of cable cost presents a particular challenge, as determining
the length of the cable route required for a given m is, itself, an optimisation
problem as described in the following section. Unlike micro-siting design, which
is a continuous optimisation, the cable routing is an integer problem. This
presents an interesting challenge in integrating an integer problem within a
gradient-based optimisation framework.

4. Cable length minimisation

4.1. Problem Formulation

The electrical power generated in each turbine must be gathered together
at a collection point where it can be properly conditioned and delivered to the
national grid. Power is carried by submarine cables which run along, or are
trenched into, the sea bed. Turbines may be connected in series, however the
cables have a finite power capacity and as such there is a limit to the number
of turbines that may be linked by a single cable.

The cable routing problem is summarised as: Given the position of n tur-
bines, find a cable routing with minimal cable cost which connects each turbine
to a collection point, under the conditions that each turbine supports a maxi-
mum of two connections (one cable in and one cable out) and that each cable
may connect a limited number of turbines as defined by the cable capacity.

This problem may be graphed as a set of vertices (turbines) and edges (ca-
bles) and formulated as a combinatorial problem consisting of two coupled op-
timisations to minimise the length of the cable network. The first optimisation
is akin to a bin-packing problem, in which the complete set of vertices must be
partitioned into subsets of the turbines which will be connected in series by a
single cable. As such, the size of each subset is limited by the cable capacity.
The second optimisation is to determine the order in which the vertices within
the subset are linked so as to minimise the route length. The overall objective
is to minimise the length of the union of the subset routes.

4.2. Cable routing optimisation in literature

A few papers have considered the optimisation of cable routing design in off-
shore wind turbine arrays which shares many design concerns with cable routing
for tidal arrays (Lumbreras and Ramos, 2013b, 2011; Bauer and Lysgaard, 2014;
González-Longatt et al., 2012; Lumbreras and Ramos, 2013a).

Lumbreras and Ramos (2013b) developed a model employing mixed integer
programming in order to capture stochasticity in both wind resource and com-
ponent failure rates in an optimisation of electrical layout. The model takes
the position and characteristics of the wind turbines (as found by a separate
micro-siting model) and determines the cables (routing and type), transformers
and converter stations. In a case study comparison, existing offshore wind farm
electrical layout designs were compared to those produced by the model. This
demonstrated that cable routing optimisation can result in significant capital
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savings on a project, together with reduced transmission losses and increased
redundancy against component failure.

In a similar vein, González-Longatt et al. (2012) developed a cost model
capturing the costs of collection points and cabling, and used a genetic algo-
rithm to find a minimum cost routing solution. As with Lumbreras and Ramos
(2013b), the locations of the turbines were determined from a prior micro-siting
assessment.

Bauer and Lysgaard (2014) identify the utility of coupling micro-siting and
cable routing design. They consider offshore wind farms and identify TopFarm
(Larsen and Réthoré, 2013) as the most sophisticated array optimisation tool
and indicative of many such tools – in that it requires in the order of thousands
of array configuration evaluations. The authors propose a strategy in which a
quick cable routing estimation is made at each micro-siting optimisation, with a
more developed optimisation carried out once the turbine sites are determined.

One of the key differences between the electrical layout design for offshore
wind farms as opposed to tidal farms is that the power collection point (at
which the cable routes terminate) may be located onshore, rather than within
the array (as with offshore wind). This is because for nearshore installations
it may be cheaper to run the extra cabling and have the electrical collection
equipment on dry land. This, however, means that the first connection in every
route is the most expensive – as it has to run from shore to the array. As such
there is an inherent ‘start-up’ cost for each route in a routing, and the optimal
solution must exploit the cable capacity to have the minimum number of routes
possible.

Having reproduced the algorithm proposed by Bauer and Lysgaard (2014)
and tested it upon typical array formations produced by OpenTidalFarm with
an on-shore collection point it was found to produce routings with more than
the minimum number of routes and which therefore were clearly sub-optimal.
This is because the heuristic was designed to work very rapidly – which it
achieves by working greedily. As noted, the cable routing problem is a coupled
set-partitioning and vertex-ordering problem and while heuristics can work well
on either one aspect, they are generally poor at dealing with both aspects si-
multaneously.

4.3. Approaches to solving the cable-routing problem

The routing problem is related to the travelling salesman problem (TSP) to
find the shortest route for a salesman to tour a number of cities (n), visiting each
exactly once and returning to where they started. Here, the ‘cities’ represent the
turbines and the salesman’s route represents the cable. This is an optimisation
problem which has been intensively studied in mathematical literature since its
conception in 1930. The multiple TSP (mTSP) is a version of the problem in
which several salesmen must tour their own individual set of cities. This variant
is closest to the cable routing problem since the capacity constraints of the cable
require that overall array routings be composed of several individual routes. So-
lution approaches have been proposed from a wide range of operational research
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problems, such as scheduling and mission planning (Bektas, 2006), and for each
application the method is tailored to suit the purpose.

Hence, there are a wide variety of approaches adopted in literature to solving
the TSP and its variants. A ‘brute force’ attempt to find a solution (i.e. trying
every permutation) would have a run time falling within a polynomial factor of
O(n!) (Bellman, 1962). As such, this becomes infeasible for n & 15. Practical
approaches to finding a solution can be split into heuristics and meta-heuristics.
Heuristics tend to be specifically designed for a certain problem, often work
greedily and have little or no ability to revise solutions. Meta-heuristics go
a step further; they tend to be more generalised and use simple heuristics to
produce multiple solutions and often have the ability to accept poorer solutions
as part of a mechanism to better explore the whole search space.

The majority of classic heuristic methods suffer from the limitation that
capacity constraints do not play a central decision role in the algorithm, but
rather are enforced as a check and limitation at each iteration. While this
greatly simplifies the formulation of the problem, it generally results in the set
of vertices being partitioned poorly, or into more routes than the minimum
necessary. While this is acceptable when the collection point is located within
or close to the array, as discussed previously in the context of the Bauer and
Lysgaard (2014) algorithm, if the distance from the collection point increases,
the first edge in the route becomes more expensive than other edges connecting
turbines – so there is an inherent ‘start-up’ cost for a route. As such, minimising
the number of routes (the ‘set partitioning’ side of the optimisation) grows in
importance compared to optimising each individual route (the TSP side of the
optimisation). In near-shore tidal array developments it will likely be more
economical to build the collection point on-shore, even at the expense of the
additional cabling. As such it is important that any algorithm employed for the
tidal scenario will still produce a good cable routing in this situation.

Meta-heuristic methods come in many forms, for example ant-colony, simu-
lated annealing and genetic algorithms. The main benefits of these approaches
is the ability to comprehensively search the solution space and have design con-
straints (such as cable capacity) codified as an integral part of the solution
generation – rather than them being enforced as a limiting check with each iter-
ation. In the case of the genetic algorithm, only solutions that comply with the
cable capacity are proposed, so this constraint is incorporated from the start –
as opposed to heuristic methods in which a check has to be carried out with each
iteration. This means that, as problems become more constrained, the solution
space shrinks and the algorithm works more efficiently.

4.4. Notation

We formulate the cable routing problem on a graph of vertices and edges.
The vertices, V represent the individual turbines and the power collection point,
and are referred to by the indices i and j (i, j ∈ V ). The sub-sea cables are
represented by undirected edges where E = {(i, j) | i, j ∈ V, i < j} is the set
of all possible edges. One cable connecting a set of turbines is called a route,
r ⊂ E. The number of cables connected along an individual route is limited
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by the cable capacity, Cap, so |r| ≤ Cap. Here all the turbines are assumed
to have the same power rating, although this could be generalised. A routing
R = r1 ∪ r2 ∪ · · · ∪ rk is a collection of individual routes (here k) and defines
a possible cable network. Since each cable may only be used once, we require
that ra ∩ rb = ∅ ∀ 0 ≤ a < b ≤ k.

The cable length L of a routing R with turbine locations m is

LR(m) =
∑

(i,j)∈R

lij(m), (6)

where lij is the Euclidean distance between vertices i and j

lij(m) =
√

(mxi −mxj)2 + (myi −myj)2, (7)

and mxi corresponds to the x coordinate of the ith vertex in m, etc.
Given fixed turbine locations, there exist a finite, but possibly large number

of routings which satisfy the above constraints. Define R to be the complete
set of these. The solution to the cable routing problem is thus

Lopt(m) = min
R∈R

LR(m). (8)

4.5. Use of a gradient-based optimisation approach with the cable-routing

The numerical solution of the cable routing problem (8) will be discussed
in section 5. Recall however, that Lopt is part of the optimisation problem
(2), which is to be solved by a gradient-based optimisation algorithm. Most
gradient-based optimisation algorithms assume that the functional is at least
once differentiable. So the natural question arises whether the minimal cable
length is a continuous and differentiable function of the turbine locations.

Unfortunately, it can easily be shown that the gradient
dLopt

dm does not always
exist. To illustrate this in one dimension, consider figure 2. If turbine number
11 (T11) is moved in the x direction, at some point, the optimal routing will be
described with turbine 11 in route 3 (r3) rather than route 2 (r2). The effect
of this movement of turbine 11 on L is shown in figure 3, both for the turbine
being held in route 3 and route 2. The intersection shows the point at which
the optimum routing will change to maintain an optimum route length. Here
the minimal cable length becomes non-smooth.

Instead, we will only be able to show that Lopt is Lipschitz continuous.
Rademacher’s theorem then proves that Lopt is differentiable almost every-
where. Further it can be shown that the differentiable pieces have a bounded
differential. Under the assumption that the optimisation algorithm never hits
a non-differentiable point, we can apply a standard quasi-Newton algorithm to
solve this non-smooth problem. Some work has been done looking at the effects
of applying a gradient-based optimisation approach to a non-smooth function
(Zhang et al., 2000; Lewis and Overton, 2009; Skajaa, 2010). Zhang et al. (2000)
use the L-BFGS algorithm (the algorithm at the heart of SLSQP) to find the
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minimum of a discontinuous saw-tooth function, with some success – depen-
dent upon the size of the discontinuities. Lewis and Overton (2009) and Skajaa
(2010) observe that the inexact line search performed by optimisation algorithms
will almost certainly miss points at which the function is non-differentiable and
hence demonstrated successful implementations of gradient-based optimisation
of non-smooth functions.

Theorem 1. The minimal cable length Lopt : R2n → R is Lipschitz continuous
and differentiable almost everywhere.

Proof. First, note that LR(m) is Lipschitz for a fixed R. This follows directly
from the definitions (6), (7). Next observe that the minimum of two Lipschitz
functions f and g is also Lipschitz. This can be seen from the relationship

min(f, g) =
f + g

2
− |f − g|

2
.

Iteratively applying this rule over the finite set R(m) yields that Lopt is Lips-
chitz. The differentiability almost everywhere follows from Rademacher’s theo-
rem.
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Figure 2: If the turbine layout from figure 4 is taken, and turbine 11 is moved
in the x direction, as shown by the arrow, when the turbine is positioned as
shown, the optimal routing will be described with turbine 11 in r2.

5. Tidal Array Routing

Various meta-heuristics were trialled for solving the cable routing problem
(8). A genetic algorithm was finally selected as, in initial experimentation, it
was found to be the most robust. Furthermore genetic algorithms are the most
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Figure 3: Graph showing the routing length for two routings as turbine 11 (T11)
in figure 2 traverses in the x direction.

popular approach used in operational research problems and therefore the most
developed. Genetic algorithms (GAs) are search meta-heuristics which sim-
ulate the process of evolution. As such, much of the terminology associated
with this approach is borrowed from genetics. Possible solutions are encoded
as numeric vectors termed ‘chromosomes’. An initial population of chromo-
somes is generated, either randomly or using a pseudo-random heuristic. This
population is evaluated using a fitness function and the fittest chromosomes
are selected and mutated to populate the next generation. The pseudo-random
nature of the mutation ensures that the search space is effectively explored,
while a good chromosome representation minimises this search space through
eliminating repeated solutions and thereby reducing redundancy (Carter and
Ragsdale, 2006). GAs are used on a wide variety of problems and are adapted
to purpose by designing suitable chromosomes and mutations. The particular
GA being developed for the application considered in this work shall be referred
to as TidalArrayRouting (TAR) to distinguish design choices specific to this
algorithm for this application from GAs in general.

5.1. Chromosome selection

The goal in selecting a chromosome representation is to use a numeric vec-
tor which minimises the potential for the same solution to be represented in
different ways (thus undesirably increasing the size of the search space) but
is also easy and computationally efficient to manipulate in order to mutate.
A comprehensive review of the available approaches for the mTSP is given in
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(Carter and Ragsdale, 2006) which compares the one chromosome technique
(Tang et al., 2000) and the two chromosome technique (Malmborg, 1996) with
a novel two-part chromosome technique.
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Figure 4: Schematic of an idealised routing, R = r1 ∪ r2 ∪ r3 with capacity
constraint Cap = 4

Consider figure 4. For this example the two-part chromosome technique
would represent this routing as

[10 , 7 , 4 , 1 , 9 , 6 , 3 , 11 , 8 , 5 , 2︸ ︷︷ ︸
order of turbines visited

, 4 , 7︸ ︷︷ ︸
breaks

].

The first part of the chromosome are the n turbines in the array, the second
part are the breaks – which denote the index of the first turbine in a new
route and thus split the routing into nrts individual routes. Compared to other
chromosome encodings this has very few redundant solutions and the size of the
solution space is shown to be

n!

(
n− 1

nrts − 1

)
. (9)

(Carter and Ragsdale, 2006)
TAR is initialised with a population, P0, comprising p routings, each repre-

sented as two-part chromosomes, where p is the population size and is a multiple
of eight (one plus the number of mutation operators; of which TAR has seven).
The population is then randomly subdivided into groups of eight and the length
of each route is evaluated. The route with the shortest length in each group
is preserved and the remaining seven routes are replaced by mutated versions
of the survivor. A new population, Pi, is assembled from the survivors and
the mutant chromosomes. By design, all mutations produce valid routings (i.e.
routings which satisfies the constraints). If the shortest route does not change
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for a predefined number of consecutive iterations, it is returned as the optimal
routing.

Initialise random
population of

chromosomes, P0

Population randomly
split into groups of
eight, each group is
evaluated and best
chromosome kept

Examine
convergence

and i

For each surviving
chromosome, the original

is retained and seven
copies are mutated

For each surviving
chromosome, the original

is retained, one copy
is passed through

Clarke & Wright and
six copies are mutated

New population,
Pi, assembled

New population,
Pi, assembled

Best performing
chromosome

selected and route
length retrieved

A.D. used to determine
gradient of length

w.r.t turbine locations
for best performing
chromosome routing

Route length returned

Derivative of route
length w.r.t. turbine

location returned

i = 0

else

i = i+ 1

i | 10

i = i+ 1

convergence or max(i) reached

Figure 5: Schematic of TidalArrayRouting developed for OpenTidalFarm

The mutation operations involve shuffling either the first part, the second
part or both parts of the chromosome, in the hope of improving its performance.
This is done naively so as to keep the computational expense of this operation
minimal. For example, the turbines at randomly chosen indices i and j may be
swapped with each other, or the section of the chromosome between i and j may
be reversed. To improve convergence, a more complex heuristic is occasionally
used in place of one of the naive mutations. This heuristic is computationally
more expensive than the naive mutation and experimentation has informed the
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decision to use it only on every tenth iteration of TAR. This gives a good
balance for a wide range of n and population sizes between convergence at
fewer iterations and the computational expense of those iterations.

The heuristic used is a modification of the Clarke and Wright greedy algo-
rithm (Clarke and Wright, 1964). This connects every turbine directly to the
collector, then calculates the saving of removing a given turbine’s connection to
the collector and instead connecting it to a neighbour. It creates a list of the
saving for each turbine being connected to each other turbine rather than the
collector, and arranges this list in order of decreasing saving. Starting at the
top of the list, the algorithm determines whether the new connection is valid
(e.g. will not exceed the cable capacity), and if so it makes the change. This
algorithm was the basis of the approach used by Bauer and Lysgaard (2014)
and as has been discussed, such an approach is limited in itself as it does not
perform the set partitioning function well. Consequently this responsibility is
taken away, and the heuristic is applied separately to each route within the
chromosome which is passed to it. Since it does not act naively like the muta-
tion operators, it often makes an improvement, aiding convergence of the overall
TAR model and justifying its additional computational expense.

Once the algorithm has found a routing (either because it has converged
to the specified tolerance or because it has reached the maximum number of
iterations), the gradient of the length of that routing with respect to the turbine
positions is computed. Since the length is simply a sum of Euclidean norms,
finding this differential is trivial.

The gradient implementation of Lopt can be rigorously verified by employing
a Taylor remainder test. Given Lopt(m) and a perturbation vector δm, then
the first-order Taylor remainder should tend to zero linearly with the decreasing
perturbation, that is

|Lopt(m + hδm)− Lopt(m)| → 0 at O(h). (10)

Similarly, the second-order remainder should converge quadratically in h,

|Lopt(m + hδm)− Lopt(m)− h∇Lopt · δ(m)| → 0 at O(h2) (11)

where ∇Lopt is the gradient of Lopt with respect to m. In other words, if h
is halved, the second-order remainder should reduce by a factor of 4. These
properties were found to hold for the cable length.

6. Integrating the micro-siting and cable-routing optimisations

Integrating the cable-routing kernel into OpenTidalFarm (see figure 1) re-
quires that for every functional evaluation, the cable-routing is optimised and
the shortest route length found. Additionally, for every gradient evaluation,
the effect of the turbine positions on the route length (dL/dm) must also be
calculated. Thus we have a nested optimisation with an inner cable-routing
optimisation for each iteration of the micro-siting optimisation.
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In order to achieve dimensional parity, a financial approach seems natural
and as such we recall from (2) that the financial return, Rfin is defined as

Rfin = IP (P (m))− CC(L(m)), (12)

and consequently,
dRfin

dm
= IP

(
dP

dm

)
− CC

(
dL

dm

)
. (13)

Consequently, we require a definition of an income function IP : R → R
determining the ‘income’ from the power extracted from the flow and a cost
function CC : R → R determining the ‘cost’ of cable. A commercial array
designer would have their own cost information based upon the cost and perfor-
mance of the equipment to be installed. Unfortunately the proprietorial nature
of such information means that it is unobtainable for academic publication.
Consequently, for this work, IP and CC will be estimated based upon available
information and assumption.

For the purposes of this work, a present value (PV) approach will be used to
adjust for the time value of money. The essence of this approach is to recognise
that there is an opportunity cost to investing cash in a project with a payoff at
a later date. Therefore the value of future earnings are discounted by the rate
an investor could receive in alternate investments. This approach enables the
cost of an investment made in the present to be effectively weighed against the
benefits of that investment repaid in the future, to arrive at the net present value
of the project. This is achieved through a discount rate, d, whereby N future
cash flows (each covering the same period of time – usually a year), Rt, earned
at year t, are discounted to give the net present value, NPV, of an investment,

NPV(d,N) =

N∑
t=0

Rt

(1 + d)t
. (14)

It is assumed that construction is instantaneous and occurs at t = 0 and is
therefore included.

Clearly the NPV is highly dependent upon the choice of the discount factor,
and therein is the first assumption that must be made in defining the financial
models. Allan et al. (2011) cite a potential range of values for d, from between
6% to 15%. Compounded over an assumed turbine lifetime of 20 years (based
on manufacturer’s specified design life) and assuming a static price per unit of
energy, this variation in d is equivalent to a variation in lifetime income of circa
35%.

6.1. Cost model

It is assumed that construction of the array is instantaneous, and therefore
the cost of the cabling does not require discounting to attain its present value.
Green et al. (2007) found purchase prices between two companies and for dif-
ferent types of cables ranged from £104.16 m−1 to £500.87 m−1 (converted
to pounds sterling and adjusted for inflation to 2014 prices), with installation
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prices ranging from £64.39 m−1 to £70.71 m−1 and a vessel mobilisation fee
of £3.42 M to £4.12 M (adjusted as before). Problematically, there has been a
significant increase in the cost of energy in general and in renewable energy in
particular. Although specific data is unavailable for tidal current power, Hep-
tonstall et al. (2012) determine that the main drivers behind the increase in UK
offshore wind energy are linked to:

• Increasing costs of materials and workforce;

• Constraints in material and production capacity throughout the supply
chain;

• Detrimental trends in currency exchange rates;

• Constraints on capacity of installation infrastructure – i.e. shipping and
ports;

• Planning and consenting bottlenecks.

Heptonstall et al. (2012) determined there had been a 51% rise in the cost of
generating wind energy from 2006 to 2010. Given that all the above points (with
the exception of planning and consenting) apply as much to sub-sea cabling
costs, and in the absence of data to the contrary, it is assumed that the 51 %
cost rise can also be applied to the cable cost in tidal power installation.

Therefore the total cost of cabling is estimated at between £254.51 m−1

with a fixed £5.16 million vessel mobilisation fee and £862.48 m−1 with a fixed
£6.22 million vessel mobilisation fee

5.16× 106 + 254.51L ≤ CC(L) ≤ 6.22× 106 + 862.48L. (15)

6.2. Income model

The price per unit of energy delivered to the grid is very difficult to estimate,
especially over the anticipated lifetime of 15 to 20 years. The industry standard
is to use a levelised cost of energy approach (LCOE, where [LCOE]= £ MWh−1).
Which is the present value of all the project costs divided by the discounted
lifetime energy production of the plant

LCOE =

∑N
t=0

Ct
ann

(1+d)t∑N
t=0

Oann

(1+d)t

, (16)

where Oann is the annual energy output of the array (assumed constant) and
Ct

ann is the annual cost of the array in year t (including capital and operational
expenditure). It is assumed that the cost of capital and the developer’s profit is
encapsulated by the discount factor, d. Project planners will look at the price
that will be achieved through sale of the electricity (including relevant carbon
credits) and subtract from it the LCOE, if this difference is greater than or
equal to zero then the project is viable.
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A full exploration of the intricacies of discount factor choice is beyond the
scope of this work, for which we simply seek a realistic value to demonstrate
the OTF+TAR algorithm. Consequently, the interested reader is directed to-
wards Allan et al. (2011) from where an upper and lower LCOE of £61 MWh−1

and £106 MWh−1 have been taken, based on a discount rate of 6% and 15%
respectively.

The annual output of each MW of installed capacity (assuming one third
of the rated plant capacity is delivered to the grid each hour) is 2920 MWh,
discounted at between 6% and 15% and sold at a present value of £61 MWh−1

to £106 MWh−1 for between 15 and 20 years

61× P ×
15∑
t=0

2920

(1.06)t
≤ IP (P ) ≤ 106× P ×

20∑
t=0

2920

(1.15)t

1.91× 106P ≤ IP (P ) ≤ 2.24× 106P (17)

where P is the installed capacity of the array – as returned by OpenTidalFarm.

7. Test cases

7.1. Idealised channel

The first test instance is an idealisation of a phased deployment in a simple
channel. It is likely that in early schemes, a small number of turbines (perhaps
eight) will be installed on a site that will end up accommodating a much larger
number (perhaps hundreds). The initial deployment should provide a good
business case to motivate developing out the rest of the site.

On this basis a scenario has been devised loosely scaled on a site in the Inner
Sound of the Pentland Firth which has been leased by the company MeyGen
Ltd (www.meygen.com) for tidal stream energy deployment. Figure 6 shows the
schematic of the test layout overlaid on the Meygen site (or figure 7 shows the
layout by itself). The site is a 1000 by 2200 m simple flat-bottomed channel
with a 333 by 600 m leased array area located as shown in the figure. Flow
enters at the left hand boundary at a constant 3 ms−1 and exits at the right.
The top and bottom boundaries are frictionless. The domain is modelled at a
constant depth of 30 m with bed roughness set to a constant value of 0.0025.
The viscosity was set to 3 m2s−1. The power collection point is located at the
south-west corner and the cable capacity, Cap is set to 6 (i.e. a maximum of 6
turbines may be connected in series).

Turbines were modelled as 20 m square with a minimum distance constraint
of 20 m edge to edge between turbines.

With complex, nonlinear optimisation problems (such as in this case) gradient-
based optimisation can be prone to finding local, rather than global optima
(Barnett et al., 2014). This means that the optimised layout can be dependent
upon the starting guess of the turbine locations m0. To combat this issue and
provide a robust procedure for array optimisation, the turbine locations were
initially optimised solely to minimise cable length and once this converged (at
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Figure 6: Map of idealised channel set up. The MeyGen Ltd (www.meygen.com)
site in the Inner Sound of the Pentland Firth is shown by the black dashed line,
the dimensions of the test domain (solid red line) and turbine area (dashed red
line) are based upon a section of this real-world development site. Map from
edina.ac.uk/digimap.

a ‘minimum cost’ turbine layout) the optimisation was then restarted for both
income and cost. The benefit of this approach is that, no matter the initial
guess, m0, the resulting minimum cost layout will be broadly the same, so that
the combined optimisation step will have the same starting layout independent
of m0.

As such, 8 turbines are initialised in a grid formation (see figure 7(a)) within
the lease area and the TAR optimisation is run. Within 8 iterations, the turbines
have been relocated into the lower left corner of the turbine site (see figure
7(c)) and cable length is minimised. The optimisation is then restarted from
this layout, with the objective now defined as in (1), to maximise the return
provided by the array, assuming a ‘worst case’ scenario – i.e. using the upper
bound of CC from (16) along with the lower bound of IP from (17). The model
converges as shown in figure 7(d) with a total power extraction of 32.19 MW
for 3135 m of cabling.
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In contrast, figure 7(b) shows the optimisation as run from the grid starting
layout solely maximising the power. The turbines move far enough so as to
no longer sit in each other’s wake, achieving a power extraction of 29.45 MW –
however this is only a local minimum – the algorithm has not found the solution
in which the turbines are formed up into a single fence so as to exploit block-
age effects. Consequently, in this instance, the coupled OTF+TAR algorithm
actually provides a better solution.

(a) (b) (c) (d)

Figure 7: Eight turbines are optimised in the domain from figure 6 with the
collection point located at the south-west corner (green dot). (a) shows domain
layout and initial turbine locations for both runs (power = 11.55 MW, cable
length would be 6424 m), (b) shows the layout after optimisation to maximise
power (power = 29.45 MW, cable length would be 6500 m), (c) shows the layout
after optimisation to minimise cable length (power = 12.92 MW, cable length
= 2523 m), this is used as the starting point for the combined maximisation of
financial return which results in the layout shown in (d) (power = 32.19 MW,
cable length = 3135 m). The velocity magnitude field is shown in figures (b)
and (d).

7.2. Idealised channel bend

In more densely populated sites, there is less potential for the power-only
optimisation to become ‘stuck’ in local minima – as there is less room for turbines
to be positioned entirely out of each others way (when the ambient flow is
monotonic and the turbines are out of the way of each other’s wake, the gradient
of the solution with respect to turbine position is flat – therefore the optimisation
is deemed to have converged). Figure 8 shows a scenario taken from Funke et al.
(2014) which is 30 m deep, flat bottomed simple channel shaped in a right-angled
bend. The turbine site shown in the figure is initialised with a grid of turbines
as before however this time there are a total of 16 turbines on a site that is
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320 by 160 metres (that is a density of circa 312 turbines per square kilometer
rather than 40 as before). CC , IP , Cap and the boundary conditions were set
as before.

Figure 8: Domain of right angle simple channel example. The location of the
power collection point is shown by the green dot, the turbine area by the red
dashed line, and the initial turbine layout by the black dots. Inflow is shown by
the arrows, outflow is across the vertical edge, the curved sides are frictionless
boundaries. Scenario taken from Funke et al. (2014) (for m0 (shown), power =
28.86 MW, cable length would be 2587 m).

Once again, the OTF+TAR algorithm was first run to find the minimum
cost solution and then run from that starting point to find the solution shown
in figure 9(b) resulting in 35.00 MW power extracted for 2387 m of cabling. For
comparison the power-only optimisation is shown in figure 9(a) and achieves
36.11 MW. The overall number of OpenTidalFarm iterations was broadly the
same for both optimisations (60 iterations with cabling, 62 iterations without).

7.3. Pentland Firth

A more realistic scenario, which is also based upon an example in Funke
et al. (2014) is modelled more recognisably on the geometry of the Inner Sound
of the Pentland Firth. Once again, the bathymetry is fixed at a constant 30 m
depth. The mesh and inflow direction are shown in figure 10, the inflow velocity
was fixed to 3 ms−1. In comparison to the previous examples, the domain is
much larger, and thus to ensure the problem remains tractable on a desktop
computer, the smallest mesh element size (located within the turbine area) was
set to 10 m compared to 2 m in the previous two examples.

The relative increase in mesh element size meant that the viscosity also had
to be increased to 90 m2s−1 in order to ensure the convergence of the flow solve.
This somewhat limits the quality with which hydrodynamic structures – such
as wakes – may be represented. The potential inclusion of turbulence models
is active work for the OpenTidalFarm project, this will help to balance the
computational cost of a flow solve (which must be repeated for each optimisation
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(a) (b)

Figure 9: Optimised micro-siting for (a) maximisation of power only (power =
36.11 MW, cable length would be 2413 m) and (b) maximisation of financial
return (power = 35.00 MW, cable length = 2387 m).

iteration) against an assurance that the physical processes involved are being
well captured. Funke et al. (2014) use a much finer mesh run on 64 cores in
order to reduce this problem.

Despite these limitations, the mesh from figure 10 still serves to demonstrate
the combined OTF+TAR optimisation. 32 turbines were initialised as before
from a regular 8 by 4 grid within the turbine area of dimensions 1000 m by 500
m (shown dashed in red in figure 10). Maximisation of power output yielded a
micrositing design as shown in figure 11 (a) which is broadly as expected from
the work of Funke et al. (2014). A barrage of turbines forms across the flow, with
smaller ‘spurs’ acting as smaller ancillary barrages. As in Funke et al. (2014)
there are, perhaps, too many turbines for the site; some of the turbines which
cannot fit into the main barrage form up along the top boundary of the site and
help to funnel flow in, the remaining turbines lie behind the main barrage.

When cable costs are included and the micrositing is optimised for the fi-
nancial return, the main structure of the array, as described above is retained,
implying that power output should not be radically different. As can be seen
in figure 11 (b) the turbines have been drawn in towards the collection point.
This resulted in an optimised array formation producing 69.47 MW and using
9.23 km of cabling, versus 70.57 MW produced by the array optimised for power
only.

As a further investigation into the interplay between array design and finan-
cial return, the Orkney case was rerun for a scenario in which the the cost of
the cabling was doubled (perhaps due to supply bottlenecks or high demand
for installation equipment). This resulted in an array formation as shown in
figure 11 (c). As expected, the turbines are, in general, pulled further toward
the collection point. However, the secondary ‘spur’ has grown significantly and
now more closely resembles a full barrage. This reduced the cable length to 8.91
km for a power output of 67.53 MW.
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Figure 10: Domain, mesh and inflow boundary of the idealised Orkney example.

8. Conclusions

In this work, a general framework has been presented for the design of tidal
turbine array micro-siting design with the inclusion of costs. This framework
has been explored by considering the specific example of how sub-marine cable
costs may be determined and balanced with the income from power generation.
This work has given a practical example of how a cost functional with a discrete
nature may be incorporated into a gradient-based optimisation approach. Thus
showing that even relatively complex cost functions can be integrated into the
OpenTidalFarm framework.

The benefit of this framework is that the industrial designer is furnished with
a more holistic approach to micro-siting optimisation. The benefits of certain
arrangements of turbines are automatically balanced with their associated costs.
This inclusive approach is distinct from the more traditional methodologies in
which the array design is determined largely based upon maximisation of power,
while costs are considered at a later stage in the design process.
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The combined optimisation algorithm was applied to three idealised scenar-
ios, one under-populated simple channel, one simple-channel with a right-angle
bend and one more realistic scenario based upon the Inner Sound of the Pentland
Firth. In the first case, inclusion of the cable-routing cost minimisation facili-
tated an arrangement in which the power was actually increased as compared
to a power-only optimisation run. This was because the power-only approach
found, and could not improve upon, a localised optimum solution – while inclu-
sion of the cable-cost enabled the turbines to be grouped together more closely
thus minimising cable cost but also maximising blockage effects and thus the
power extracted.

In the second case, with a right angle bend, the turbine area was much more
highly populated and inclusion of the cable cost resulted in a decreased cable
cost at the expense of a slight decrease in power production. Thus the balance
of the cost and income functionals was demonstrated.

Finally, an idealised model of the Inner Sound of the Pentland Firth was
run with 32 turbines. Here the site had a good population of turbines for its
size. The characteristic shape of the array, when optimised with consideration
of cabling cost, was similar to the power-only optimisation but the turbines
were arranged more tightly and towards the back of the site, close to where
the collection point for the cables was located. The power extracted by this
array was broadly the same as the array optimised for power alone while the
cable cost could be reduced significantly. This demonstrated that the move to a
more holistic design approach does not always mean a compromise in the power
output of the array.

The main extensions of this work are to increase the realism of the model.
On the power optimisation side, elements such as bathymetry and realistic time-
dependent tidal forcing are simple to include, but come at an increased (some-
times significantly) computational cost. Likewise the inclusion of turbulence
models will likely be an important step to fully capturing the structure and
shape of the turbine wake, which is obviously a vital part of the interaction
between turbines. On the cabling side, it is likely that cable contractors will
aim to route cables to follow bathymetric features – rather than necessarily use
straight runs as assumed here. An algorithm which could identify such features
and direct cable routings to exploit them would be of value to developers. There
is also scope to improve the parallelism of the TAR code, to improve computa-
tional run time. Apart from the methodology, the functions used to run the test
cases, which convert the cable length and power extracted into a financial costs
and incomes could be much improved. As has been discussed the proprietorial
nature of such information makes it difficult to reliably source. Finally, cable
cost is only one of several location-based costs, there is an ongoing effort to
construct a library of such costs which, when used together, can provide a full
accounting of the costs which feed into a micro-siting design.
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(a) (b)

(c) (d)

Figure 11: Close up of Orkney case with optimised micro-siting for (a) maximi-
sation of power only (power = 70.57 MW, cable length would be 9.70 km) and
(b) maximisation of financial return (showing cable routing) (power = 69.47
MW, cable length = 9.23 km). Figure (c) shows a scenario where the cost of
cabling doubles (power = 67.53 MW, cable length = 8.91 km) and (d) shows a
comparison of the three scenarios, with (a) in blue, (b) in green and (c) in red.
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