A Grammar for Spreadsheet Formulas
Evaluated on Two Large Datasets

Efthimia Aivaloglou, David Hoepelman, Felienne Hermans
Software Engineering Research Group
Delft University of Technology
Mekelweg 4, 2628 CD Delft, the Netherlands
e.aivaloglou@tudelft.nl, d.j.hoepelman@student.tudelft.nl, f.f.j.hermans@tudelft.nl

Abstract—Spreadsheets are ubiquitous in the indus-
trial world and often perform a role similar to other
computer programs in many different domains. How-
ever, there does not exist a reliable grammar that is
concise enough to facilitate research on spreadsheet
formula code bases. This paper presents a grammar
for spreadsheet formulas that is compatible, is compact
enough to feasibly implement with a parser generator,
and produces parse trees suited for further manipu-
lation and analysis. We evaluate the grammar against
more than one million unique formulas extracted from
the well known EUSES and Enron spreadsheet datasets,
successfully parsing 99.99%. Additionally, we utilize the
grammar to analyze these datasets and measure the
frequency of usage of language features in spreadsheet
formulas. Finally, we identify smelly constructs and
edge cases in the syntax of formulas.

I. INTRODUCTION

Spreadsheets are widely used in industry: Winston [1]
estimates that 90% of all analysts in industry perform
calculations in spreadsheets. Their use is diverse, ranging
from inventory administration to educational applications
and from scientific modeling to financial systems. It is
estimated that 90% of desktops have Excel installed [2]
and that the number of spreadsheet programmers is bigger
than that of software programmers [3].

Because of their widespread use, they have been the
topic of research since the nineties [4]. Recent spreadsheet
research has often focused on analyzing spreadsheets. For
example, there have been attempts to visualize spread-
sheets [5], [6]. More recently, researchers have attempted
to define spreadsheet smells: applications of Fowler’s code
smells to spreadsheets [7], [8], followed by approaches to
refactor spreadsheets [9], [10].

These research works analyze the formulas within
spreadsheets, and therefore often parse the formulas. This
is done either by using simple grammars which have not
been evaluated ([10]), or through implied, undefined
grammars([5], [7]-[9]). The above analyses are our main
motivation towards a defined grammar. Having such a
grammar will enable parsing spreadsheet formulas into
processable parse trees which can in turn be used to ana-
lyze cell references, extract metrics, find code smells and
explore the structure of spreadsheets. Essentially, a reliable
grammar can facilitate research on the spreadsheet formula
code bases. Furthermore, research towards defining and

verifying a formula grammar can facilitate exploring and
possibly uncovering smelly syntactical constructs that are
within the grammar coverage.

To make a grammar suitable for these goals, the re-
quirements that we set for it are (1) to be compatible
with the official Excel formula language, (2) to produce
parse trees suited for further manipulation and analysis,
and (3) to be compact enough to feasibly implement with
a parser generator. The approach that we took towards
developing the grammar was gradual enrichment through
trial-and-error: we started from a simple grammar contain-
ing only the well known formula structures, implemented
its parser, and provided as input to it formulas extracted
from spreadsheet datasets. We used the two major datasets
that are available in the spreadsheet research community:
The EUSES dataset [11] and the Enron corpus [12], jointly
containing over 20,000 spreadsheets. The final grammar
resulted from many cycles of parse errors, enrichments and
refinements, until all common and rare cases found in the
datasets were supported.

The contributions of this paper are (1) a concise gram-
mar for spreadsheet formulas, (2) the evaluation of the
compatibility of the grammar using two major datasets,
and (3) an analysis of the common formula characteristics
and of the rare grammatical cases of the datasets.

The remainder of the paper is organized as follows: In
the following section we summarize the basic concepts of
spreadsheets and of the formula language. In Section III we
present the spreadsheet formula grammar, its lexical and
syntactical analysis rules, and details on precedence and
ambiguity. Section IV explains how we implemented and
evaluated the grammar, presents the obtained results, and
analyses the datasets’ formula characteristics. In Section
V we discuss the grammar and its limitations. Section VI
presents related work and Section VII concludes the paper.

II. BACKGROUND

Spreadsheets are cell-oriented dataflow programs which
are Turing complete [13].

A single spreadsheet file corresponds to a single
(work)book. A workbook can contain any number of
(work)sheets. A sheet consists of a two-dimensional grid
of cells. The grid consists or verticals rows and horizontal
columns. Rows are numbered sequentially top-to-bottom
starting at 1, while columns are numbered left-to-right

alphabetically, i.e. base-26 using A to Z as digits, starting
at ‘A’, making column 27 ‘AA".

A cell can be empty or contain a constant value, a
formula or an array formula. Formulas consist of ex-
pressions which can contain constant values, arithmetic
operators and function calls such as SUM(...) and, most
importantly, references to other cells. Function arguments
are separated by commas.

A. References

References are the core component of spreadsheets. The
value of any cell can be used in a formula by concatenating
its column and row number, producing a reference like
B5. If the value of a cell changes this new value will be
propagated to all formulas that use it.

When copying a cell to another cell by default refer-
ences will be adjusted by the offset, for example copying
=A1 from cell B1 to C2 will cause the copied formula
to become =B2. This can be prevented by making the
reference absolute by prepending a $ to the column index,
row index or both. The formula =A1 will remain the same
on copy while =$A1 will still have its row number adjusted.

An alternate style called R1C1 as opposed to the above
A1 style exists, but it is very rarely seen or used by users.
In R1C1 references one specifies either the offset to a cell
between square brackets or its concrete location. In R1C1
style R[4]C[-2] means the cell two columns to the left and
four rows down, while R2C2 refers to cell B2. The biggest
advantage of R1C1 is that it causes identical formulas to be
the same even when they operate on different cells or data
because of their position. These properties make R1C1
useful as an internal representation, but the grammar
presented in this paper is intended for the common Al
reference style.

References can also be ranges, which are collections of
cells. Ranges can be constructed by three operators: the
range operator :, the union operator , (a comma) and the
intersection operator ., (a single whitespace). The range
operator creates a rectangular range with the two cells as
top-left and bottom-right corners, so =SUM(A1:B10) will
sum all cells in columns A and B with row number 1
through 10. The range operator is also used to construct
ranges of whole rows or columns, for example 3:5 is the
range of the complete rows three through five, and A:D is
the range of columns A through D. The union operator,
which is different from the mathematical union as dupli-
cates are allowed, combines two references, so Al1,C5 will
be a range of two cells, A1 and C5. Lastly the intersection
operator takes only the cells which are in both arguments,
=A:A 5:5 will thus be equivalent to =A5.

A user can also give a name to any collection of cells,
thus creating a named range which can be referenced in
formulas by name.

B. Sheet and external references and DDE

By default references are to cells or ranges in the same
sheet as the formula, but this can be modified with a

prefix. A prefix consists of some identifier, followed by an
exclamation mark followed by the actual reference.

The most common use case is to reference another
sheet in the same workbook, where the prefix is sim-
ply the sheetname: =Sheetname!Al. References to exter-
nal spreadsheet files are also possible, which is done by
prepending the file name in between square brackets:
=[Filename] Sheetname!Al or =[Filename] ! NamedRange.
A peculiar type of prefix are those that indicate multiple
sheets: =Sheet1:Sheet10!A1 means Al in Sheetl through
Sheet10. Sheet names can also be between single quotes:
=’Sheetname with space’!Al.

In Windows versions of Microsoft Excel formulas can
also call external programs through Dynamic Data Ex-
change (DDE). DDE links are a special case of refer-
ences, used for receiving data from other applications.
They take the form of =Program|Topic!Arguments, e.g.
=Database|TableA!Columnl.

C. Array Formulas and Arrays

In spreadsheet programs it is possible to work with one-
or two-dimensional matrices.

When constructed from constant values they are called
array constants, e.g. {1,2;3,4}. They are surrounded by
curly brackets, columns are separated by commas, and
rows by semicolons. Several matrix operations are avail-
able, for example =SUM({1,2,3}*10) will evaluate to 60.

Array Formulas use the same syntax as normal for-
mulas, except that the user must enter Ctrl + Shift +
Enter to signal that it is an Array formula. Excel and
LibreOffice surround the formula with curly braces. Google
docs works differently and requires the user to surround an
array formula with ARRAYFORMULAC(...).

Marking a formula as an array formula will enable
one- or two-dimensional ranges to be treated as array.
For example if A1,A3,A3 contain the values 1,2,3 the array
formula {=SUM(A1:A3%10)} will evaluate to 60. Further-
more, an array formula allows the user to return multiple
results, which will be presented in multiple cells. The array
formula {={1,2,3}*{4,5,6}} will show 4, 10 and 18 in
three different cells.

III. SPREADSHEET FORMULA GRAMMAR

For previous and ongoing research the authors needed
a grammar for Microsoft Excel spreadsheet formulas with
the following requirements:

1) Be compatible with the official language

2) Produce parse trees suited for further manipula-
tion and analysis with minimal post-processing
required

3) Be compact enough to feasibly implement with a
parser generator

While an official grammar for Excel formulas is pub-
lished [14], it does not meet the above requirements for
two reasons. Firstly, it is over 30 pages long and contains
hundreds of production rules and thus fails requirement 3.

Secondly, because of the detail of the grammar and the
large number of production rules the resulting parse trees
are very complex and fail requirement 2.

For this reason the authors decided to construct a new
grammar with the above requirements as design goals.

A. Grammar class

While the class of this grammar is not strictly LALR(1)
due to the present ambiguity, we implemented this gram-
mar using a parser generator based on LALR(1) grammars.
This is because the present ambiguity can be solved by
defining operator precedence (section II1I-D) and manually
resolving a conflict (section III-F). These two features are
supported by most LALR(1) parser generators.

B. Lezxical analysis

Table I contains the lexical tokens of the grammar,
along with their identification patterns in the regular
expression language. All tokens are case-insensitive.

Lexical analysis requires the scanner to support token
priorities. Removing the necessity for token priorities is
possible by altering the tokens and production rules, but
makes the grammar more complicated and the resulting
tree harder to use, thus being detrimental to design goals
2 and 3.

Some simple tokens are directly defined in the produc-
tion rules in Figure 1 in between quotes for readability and
compactness.

1) Dates: The appearance of date and time values
in spreadsheets depends on the presentation settings of
cells. Internally, date and time values are stored as positive
floating point numbers with the integer portion represent-
ing the number of days since a Jan 0 1900 epoch and
the fractional portion representing the portion of the day
passed.

For this reason, the grammar only parses numeric dates
and times and these are not distinguishable from other
numbers.

2) External References: The file names in external
references in formulas, both to external files and DDE, are
not stored as part of the formula in the Microsoft Excel
storage format, but instead are replaced by a numeric
index. This index is then stored in a file level dictionary
of external references. A formula that is presented to
the user as =[C:\Path\Filename.x1lxs]Sheetname!Al is
internally stored as [X]Sheetname!A1l, where X can be any
number.

For this reason the presented grammar supports only
numeric external references. Adding support for full file-
names can be achieved by introducing an additional token
or altering the FILE token, but that external filenames can
be presented to and entered by the user in a myriad of
different formats, depending on conditions such as if the
file is opened in the spreadsheet program.

Fig. 1: Production rules

(Start) ::= (Constant)
| ’=’ (Formula)
| (ArrayFormula)

(ArrayFormula) ::= ‘{=" (Formula) ‘¥’

(Formula) ::= (Constant)
| (Reference)
| (FunctionCall)
| “C (Formula))’
| (ConstantArray)
| RESERVED-NAME

(Constant) ::= NUMBER | STRING | BOOL | ERROR

(FunctionCall) ::= (Function) (Arguments) ‘)’
| (UnOpPrefiz) (Formula)
| (Formula) ‘%’
| (Formula) (BinOp) (Formula)

(UnOpPrefiz) = ‘4 | =

<Bz'n0p> — 4+’ ‘ 0 | 4*’ L/’ | “~)
| £<7 | (>7 | (=) | 4<=7 ‘ ‘>=’ | L<>7

(Function) ::= FUNCTION | UDF

(Arguments) ::= (Argument)

(Argument) ¢,” (Arguments)

(Argument) ::= (Formula) | €

= {
(Reference) ::= (Referenceltem)
| (Reference) ‘:’ (Reference)
(Reference) ‘)’ (Reference)
“C (Uniony)’
‘C (Reference) ‘)’
(Prefix) (Referenceltem)
(Prefix) UDF (Arguments))’
(DynamicDataExchange)
(Referenceltem) ::= CELL
| (NamedRange)
REFERENCE-FUNCTION Arguments ‘)’
VERTICAL-RANGE
HORIZONTAL-RANGE
| ERROR-REF
(Prefiz) ::= SHEET
FILE SHEET
FILE ‘V’
QUOTED-FILE-SHEET
MULTIPLE-SHEETS
FILE MULTIPLE-SHEETS

(NamedRange) ::= NAMED-RANGE
| NAMED-RANGE-PREFIXED

= (Reference) | (Reference) ¢,” (Union)
::= FILE ‘!” DDECALL
ConstantArray) == ‘{’ (ArrayColumns) ‘¥’

(Union)
(DynamicDataFEzchange)
(

(ArrayColumns) ::= (ArrayRows)

| (ArrayRows) *;’ (ArrayColumns)

(ArrayRows) := (ArrayConstant)
| (ArrayConstant) ‘,’ (ArrayRows)
(ArrayConstant) ::= (Constant)

| (UnOpPrefix) NUMBER
| ERROR-REF

TABLE I: Lexical tokens used in our grammar

Token Name Description Regular Expression Priority
BOOL Boolean literal TRUE | FALSE 0
CELL Cell reference $7 [A-Z]+ $7 [0-9]+ 2
DDECALL Dynamic Data Exchange P ([A-Z0-9__ 1@#3% &*()+={}:]<>,./7\\] | M)+~ 0
ERROR Error literal #NULL! | #DIV/0! | #VALUE! | #NAME? | #NUM! | #N/A 0
ERROR-REF Reference error literal #REF! 0
FILE External file reference \[[0-9]+ \] 5
FUNCTION Excel built-in function (Any entry from the function list!) \(5
HORIZONTAL-RANGE Range of rows $7 [0-9]+ : $7 [0-9]+ 0
MULTIPLE-SHEETS Multiple sheet references [A-Z0-9]+ : ([A-Z0-9__.]+|([A-Z0-9_ "&*()+={}s|<>,./2\\] | H)+)! 1
NAMED-RANGE Named range [A-Z_][A-Z0-9_.]* -2
NAMED-RANGE-PREFIXED vamed range which starts with (TRUE | FALSE | [A-Z]4[0-9]4) [A-Z0-9__]+ 3
a string that could be another token
An integer, floating point
NUMBER-LITERAL or scienfiﬁc notatif);npnumber literal [0-91+,7 [0-9]* (e [0-9]+)? 0
QUOTED-FILE-SHEET A file reference within single quotes A[[0-9]4 \] ([0-9A-Z_ 1@#8% &*()+={}:;]<>,./\\] | ")+ ! 5
REFERENCE-FUNCTION Excel built-in reference function (INDEX | OFFSET | INDIRECT)\(5
RESERVED-NAME An Excel reserved name _xInm\. [A-Z_]+ -1
SHEET The name of a worksheet ([0-9A-Z__.]4 |’ ([0-9A-Z__1@#3% &*()+=|:;<>,./7\\] | ")+) ! 5
STRING String literal N aRIEDLE 0
UDF User Defined Function (_xII\.)? [A-Z0-9]+ (4
VERTICAL-RANGE Range of columns $7 [A-Z]+ : $7 [A-Z]+ 0

Fig. 3: Syntax diagram of the (Reference) production rule with nonterminals expanded

)
b
(Reference) ::= »w— ’(’L Reference 1 -
<Refe7’ence 7 (Reference)
N CELL
L JL SHEET VERTICAL-RANGE
FILE MULTIPLE_SHEETS HORIZONTAL-RANGE
FILE -'I NAMED-RANGE
QUOTED_FILE_SHEET NAMED-RANGE-COMBINED
ERROR-REF
REFERENCE-FUNCTION ’)7
UDF J L (Formula) _J
FILE -’I’- DDECALL
. D. P
TABLE II: Operator precedence in formulas Operator Precedence

Precedence
Higher is greater

03U AW

Operator(s)

=< > <= >= <>
&
+ - (binary)

*

%
+ - (unary)

All operators in Excel are left-associative, including the
exponentiation operator which in most other languages is
right-associative. In order to resolve ambiguities a LALR
parser generator needs the operator precedence to be
defined, which can be found in table II.

E. Intersection operator

The intersection binary operator in Excel formulas is a
single space, while the rest of the language is whitespace in-
dependent outside of strings. While this is straightforward
to define in EBNF, it can be challenging to implement

C. Syntactic analysis

The complete production rules of our grammar in
Extended BNF syntax can be found in Figure 1. The start
symbol is Start.

(Formula) and (Reference) are the two most important
production rules in this grammar. These are also illus-
trated as syntax diagrams, expanded to include lexical
tokens, in Figures 2 and 3.

using a parser generator.

Our parser generator supports a feature called implicit
operators which was used to implement this operator.
Implicit operators are operators which are left out and
only implied, for example in calculus the multiplication
operator is often omitted: 5a is equivalent to 5 - a.

1A function list is available as part of the reference implementation.
Lists provide by Microsoft are also available in [15] and [14].

Fig. 2: Syntax diagram of the (Formula) production rule
with most production rules expanded

(Formula) ::= »- -

FUNCTION C 7) oK

UDF —J (Formula) _J

(Formula)

(Formula) — (BinOp) — (Formula)
I NUMBER ~

STRING
BOOL
ERROR

RESERVED-NAME

M (Reference) ————

NM—————(- (Formula)) ———
7.9

STRING
BOOL
ERROR
ERROR-REF ——

F. Ambiguity

Due to trade-offs on parsing references (see section
ITI-G1) and on parsing unions (see section III-G2) our
grammar is not fully unambiguous. Ambiguity exists be-
tween the following production rules:

1) (Reference) :=
2) (Reference) ::=
3) (Formula) :=

‘C (Reference))’
“C (Union))’
‘C (Formula))’

A formula like =(A1) can be interpreted as either a
bracketed reference, a union of one reference, or a reference
within a bracketed formula.

In an LALR(1) parser the ambiguity manifests in a
state where, on a ?) ’ token, shifting on rule 1 and reducing
on either rule 2 or 3 are possibilities, causing a shift-
reduce conflict. This was solved by instructing the parser
generator to shift on rule 1 in case of this conflict, because
this always results in a correct interpretation and thus in
a correct parse tree.

G. Trade-offs

1) References: References are of great importance in
spreadsheet formulas, and thus of interest for analysis.
To support easier analysis (design goal 2) references have
different production rules than other expressions. This
causes references to be easily identified and isolated, but
has the downside of increasing ambiguity, as explained in
Section III-F.

Another approach would be to parse all formulas simi-
larly and implement a type system, however this would be
very detrimental to both ease of analysis (design goal 2)
and to ease of implementation (design goal 3).

2) Unions: The comma serves both as an union oper-
ator and a function argument separator. This proves chal-
lenging to correctly implement in a LALR(1) grammar.

A straightforward implementation would use produc-
tion rules similar to this:

(Union) = (Reference) ¢,” (Reference)

(Arguments) ::= (Argument)
| (Argument) ¢, (Arguments)

However, this will cause a reduce-reduce conflict be-
cause the parser will have a state wherein it can reduce to
both a (Union) or (Argument) on a , token. Unfortunately
there is no correct choice: in a formula like =SUM(A1,1) the
parser must reduce on the (Argument) nonterminal, while
in a formula like =A1,A1 the parser must reduce to the
(Union) nonterminal. With the above production rules a
LALR(1) parser could not correctly parse the language.

The presented grammar only parsers unions in between
parentheses, e.g. =SMALL((A1,A2),1). This is a trade-off
between a lower compatibility (design goal 1) and an easier
implementation (design goal 3). We deem this decreased
compatibility to be acceptable since unions are very rare
(see section IV) and all but two were within parentheses
(see section V).

Additionally formulas that this grammar does not parse
often result in runtime errors after evaluation. For example
=A1,A1 does parse in a spreadsheet program, but produces
the error #VALUE! on evaluation.

Implementing the straightforward rules above, while
desirable, is not possible without using a more powerful
grammar class.

IV. EVALUATION

In this Section we explain how we implemented and
evaluated the grammar using the datasets and we discuss
the obtained results and the formula parse failures. In
the grammar analysis in Section IV-B we examine how
frequently the grammatical features occur in the formulas
of the datasets.

The grammar is implemented in the Irony parser gen-
erator framework? and the resulting parser is available for
download?®.

To extract unique formulas and use them as input to
the parser we built a tool that opens spreadsheets using
the Gembox third party library. The tool reads all cells and
identifies which have the same formula in R1C1. It then
selects the first cell from each group of cells that share the
same formula in the R1C1 style and uses its formula string
as input for the parser. It parses only one cell from each
R1C1 group—the only differences between the formulas
in the same group are the values of the references, so the
structure of the produced parse trees is exactly the same.

To evaluate the grammar we apply it for parsing a
total of 1,039,751 unique formulas. These originate from

2https://irony.codeplex.com/
Shttps://github.com/Perfect XL /XL Parser

the two major datasets available in the spreadsheet re-
search community: The EUSES dataset [11], comprising
of 4,498 spreadsheets and the Enron email corpus [12],
which became available after the Enron company declared
bankruptcy, comprising of 16,190 spreadsheets. We were
not able to process 1087 (5.25%) of these spreadsheets,
either because they are password protected or because
of read failures due to the Gembox library. In total,
the 19,601 spreadsheets that were processed from the
two datasets include 22,632,306 formula cells. These are
grouped into 1,039,751 R1C1 groups, which is the number
of unique formulas that were used as input to the parser.

To give a rough indication, processing these two
datasets and extracting these results takes around 4 hours
on a computer with an Intel Core i7 processor, 16GB of
RAM and a Solid State Drive.

Out of the 1,039,751 unique formulas from the two
datasets that were used as input to the parser, 1,039,709
(99.99%) were parsed successfully. This satisfies our first
design goal of compatibility with the official language.
Regarding the second and third design goals, the imple-
mentation of the parser proved feasible and compact and
the resulting parse trees suited for manipulation, having
20 types of non-terminal and 19 types of leaf nodes.

A. Unparsable formulas

The 42 formulas that were not parsed using the gram-
mar defined in Section III are:

e =-NOX, Regi and =-_S02, Regi in two different
sheets in the Enron dataset. These are cases of
an union operations without parentheses that the
grammar does not parse as explained in Section
IT1-G2.

e =+EY, was included in an Enron file that we assume
to be either corrupt or another type of binary file,
as the file is indecipherable.

e 39 formulas that are not returned correctly
from the Gembox third party library that
we use for opening spreadsheets. For example
our tool reads and attempts to parse formula
IF(=7,AVERAGE(C4:C11),0) and fails, but in real-
ity the formula is IF(B8=7,AVERAGE(C4:C11),0)
which does parse. All these 39 cases are parsed
successfully when we manually provide them as
input to the parser.

B. Grammar Analysis

The grammar resulted from many cycles of parse errors,
enrichments and refinements. There are parts of the gram-
mar that cover a particularly complex set of structures.
In this section we analyze the formulas in the datasets
and measure the frequency of their characteristics and
grammatical structures. We also identify potentially smelly
grammatical constructs and edge cases in the syntax of
formulas.

1) Formulas and Functions: The (Formula) rule covers
all types of spreadsheet formula expressions. As illustrated
in the syntax diagram in Figure 2, spreadsheet formulas
can be constants (=5), references (=A3), function calls
(=SUM(A1:A3)), array constants(={1,2;3,4}, explained in
Section II-C), or reserved names (=_xlnm.Print_Area).
Function calls invoke actual named (system or user de-
fined) functions or operators applied to one or more for-
mulas.

Table IIT shows how frequently each of the production
rules in Section ITI-C occurs in the formulas of the two
datasets. Jointly, 85.32% of the formulas include a func-
tion call. Actual named functions are invoked by 46.7%
of the formulas. The vast majority are system defined
functions, but there is a significant amount of formula
cells (303,789—1.34%) invoking user-defined functions—
e.g., =[1]lerUserEmail (User_Id). A special case of user
defined functions are the ones created using the Excel xlI
add-in library. These are found in the dataset invoked as
_x11.functionName, by 0.61% of the formula cells.

Operators are used in 66.8% of the formula cells, with
binary operators being the most common ones, appearing
in 59.93% of the formulas. Analyzing the utilization of
constants, we find that 39.38% of the formula cells contain
at least one; more than one third (35.2%) of the formula
cells contain a number and 11.97% are formulas that
contain text. Reserved names are uncommon, with 1,281
occurrences of the _xlnm.Print_Area and 5 occurrences
of _x1nm.Database.

Regarding function arguments, spreadsheet systems
allow empty ones (e.g. =SUM(,E35,E37)) but this is rarely
done—in only 0.05% of the formula cells. Unions are
also rare. Only 385 formula cells contain a union used
as argument, e.g. =LARGE((F38,C38),1). All occurrences
were arguments of the LARGE and SMALL functions—these
two functions require an array of cells to be declared
as a single argument, necessitating a union if the cells
are not in a single range. In the EUSES dataset we also
found 19 cases of constant arrays used as arguments, e.g.
=FVSCHEDULE(1,0.09;0.11;0.1).

The (ArrayFormula) rule, covering formulas sur-
rounded by brackets, is the only part of the grammar
that is not evaluated. The Gembox library that we use for
reading spreadsheets does not support array formulas—it
reads them as regular formulas, without the surrounding
brackets. For this reason, we cannot we extract information
on their frequency in the two datasets.

2) References: Spreadsheet formulas allow for different
types of references, including single cell references, cell
ranges, horizontal or vertical ranges, named ranges and
reference-returning build-in or user-defined functions. All
of these references can be internal (in the same or in
different sheets) or external. Syntactically, they can be
expressed in a number of ways. The simplest case of a
reference to a cell range can be expressed in any of the

TABLE III: Frequency of spreadsheet formulas with specific grammatical structures in the EUSES and Enron datasets

Syntax Example Unique formulas Total formulas
(Formula) =1+2 1,039,709 22,630,110

(Reference) =E9/E10 966,860 92.99% 22,451,956 99.21%
CELL =A5 955,518 91.90% 22,342,591 98.73%
(FunctionCall) =SUM(A5:A22) 707,783 68.08% 19,308,203 85.32%
(BinOp) —H10-HS 399,046 38.38% 13,562,852 59.93%
(Function) =SUM(A5:A22) 293,183 28.20% 10,569,248 46.70%
FUNCTION =SUM(A5:A22) 288,929 27.79% 10,459,005 46.22%
(Constant) =SUM(A5:A22) 273,310 26.29% 8,912,021 39.38%
NUMBER =(B8/48)*15 251,150 24.16% 7,966,125 35.20%
(Prefiz) =Sheet1!B1 337,017 32.50% 5,651,635 24.97%
SHEET =Sheet1!B1 304,170 29.26% 5,335,009 23.57%
(Reference) ’:’ (Reference) =SUM(A5:A22) 184,877 17.78% 3,852,467 17.02%
(UnOpPrefiz) =+B11+1 218,527 21.02% 3,283,935 14.51%
STRING =COUNTIF (B$4:B$46,">=90") 57,317 5.51% 2,708,039 11.97%
(NamedRange) =SUM(freq) 21,240 2.04% 1,630,263 7.20%
BOOL =IF(AND(R11=1,R14=TRUE),G19,0) 7,522 0.72% 1,264,751 5.59%
FILE =[11]Sheet1!C5 104,941 10.09% 1,135,234 5.02%
REFERENCE-FUNCTION =SUM(J9:INDEX(J9:J41,B43)) 10,515 1.01% 780,050 3.45%
QUOTED-FILE-SHEET =(’[2]Detail I&E’!D62)/1000 33,782 3.25% 325,499 1.44%
UDF =SQRT(_eoq2(C5,C4,C6,C7)) 23,202 2.23% 303,789 1.34%
> xIlY =_x11.RiskTriang(F9,F7,F8) 12,426 1.20% 137,886 0.61%
ERROR_REF =AVERAGE (#REF!) 3,482 0.33% 123,476 0.55%
(’ (Reference))’ =(2x(B29))/(1+B29) 5,259 0.51% 85,724 0.38%
VERTICAL-RANGE =COUNT (A:A) 860 0.08% 56,118 0.25%
FILE 'V =[1] 'today 2,040 0.20% 28,448 0.13%
ERROR =IF(AND(R11=1,R14=TRUE),G19,0) 380 0.04% 27,245 0.12%
"%’ =IF(E5>18,3%,0%) 858 0.08% 16,606 0.07%
Empty argument =DCOUNT (Lettergrades, I80:181) 1,343 0.13% 10,512 0.05%
Complex range =SUM(I8:K8:M8) 369 0.04% 8,583 0.04%
(DynamicDataExchange) =TWINDDE |RSFRec!’NGH2 NET.CHNG" 3,276 0.32% 3,686 0.02%
Intersection =Ending_Inventory Jan 298 0.03% 2,829 0.01%
MULTIPLE-SHEETS =SUM(Sheet1:Sheet20!129) 173 0.02% 1,986 0.01%
Prefixed right reference limit ~ =SUM(’Tot-1’!$B8:’Tot-1’!B8) 147 0.01% 1,501 0.01%
RESERVED__NAME =C23/_x1lonm.Print_Area 76 0.01% 1,286 0.01%
UDF reference =[1] !wbname () 332 0.03% 855 0.00%
HORIZONTAL-RANGE =MATCH(F3,Prices!2:2,0) 11 0.00% 836 0.00%
(Union) =LARGE((F38,C38),1) 10 0.00% 385 0.00%
(ConstantArray) =FVSCHEDULE(1,0.09;0.11;0.1) 15 0.00% 19 0.00%

following ways:

= SUM(A1:A2:A1)
= SUM(A1:A2 A:A))

—
=}

—_

SUM(A1:A2) (1)

= SUM(Sheet1!A1:A2) (2)

= SUM(Sheet1!A1:(A2)) (3)

= SUM(’Sheet1’!A1:A2) (4)

= SUM(Sheet1!A1:Sheet1!A2) (5)
= SUM(Sheet1!Al:’Sheetl’!A2) (6)
= SUM(namedRangeA1A2) (7)

= SUM(A1,A2) (8)

= SUM((A1,A2)) (9)

10)

1)

—~

The (Reference) rule, drawn in diagram 3, covers all types
of referencing expressions. It was the rule that was the
most complex to devise to cover all cases found in the two
datasets.

As shown in Table III, 99.21% of the formula cells
in the two datasets contain at least one (Reference), and
24.97% of these contain a reference that is not local, since

it includes a (Prefiz), like formulas (2)-(6). External file
references exist in almost 5.02% of the formulas. 17.02%
of the formulas include a reference to a ’>:’ separated cell
range. Named ranges, like in the case of formula (7), exist
in 7.2% of formula cells and, interestingly, horizontal and
vertical ranges are rarely used (jointly, in 0.25% of the
formulas). 0.55% of formulas include references to errors,
e.g. =#REF!E3. These referencing errors are more than
four times more common than all other types of errors
combined—the ERROR token exists in 0.12% of the formula
cells.

Moving to the edge cases of the grammar, the struc-
tures that were less common in the datasets include:

File-only external references
External references are normally in the form
[File]Sheet!Cell. In 28,488 formula cells
(0.13%), however, the sheet is not specified,
e.g. =[2] 'LastTrade. These are either cases
of references to external named ranges or to
external UDFs.

Multiple sheet references
1,986 cells (0.01%) contain this complex

case of reference, which spans across
multiple sheets. An example formula is
=SUM(Sheet1:Sheet10!A5), evaluated by
summing all cells in position A5 from Sheetl

to Sheet10.

References to external UDFs
855 cells contain references to external
user-defined functions, for example

=[1] 'SheetName ().
Prefixed right limits
1,501 cells include a reference with a prefix in
the right limit, like in formulas (5) and (6). In
all cases this prefix is identical to the first one,
as continuous ranges spanning across multiple
sheets are not supported by Excel. Still, this
syntax is supported.

A special uncommon case in the grammar are the
functions that return references, namely the INDEX, the
OFFSET and the INDIRECT functions. For example, INDEX
returns the reference of the cell at the intersection of a par-
ticular row and, optionally, column, so INDEX(B1:B10,3)
returns a reference to cell B3 and can be used in a
formula as =SUM(A1:INDEX(B1:B10,3)) being equivalent
to =SUM(A1:B3). These functions are relatively common:
they are found in 3.45% of the formula cells, with the
most common one being the INDEX (in 2.47% of formula
cells) and the least common one being the INDIRECT (in
0.21%). In addition to these three functions, the official
formula language specification includes the IF and CHOOSE
functions as able to return references, but there was no
formula in the datasets using them as such.

Finally, DDE links, discussed in Section II-B, were
found in 3,686 formula cells. Example formulas in the
dataset include =TWINDDE|RSFRecord!’NGH2 NET.CHNG’
and =GLDDEML|Action!’SGIMP,LA’/100.

3) Smelly grammar constructs: There are two con-
structs in the spreadsheet formula grammar that we con-
sider to be smelly, i.e. counterintuitive, inconsistent to the
rest of the grammar and error-prone: Complex ranges and
the implicit intersect operator.

By complex ranges we mean (Reference)s that in-
clude more than two or different types of ’:’ separated
(Referenceltem)s. An example is range B2:D4:C1:C5, illus-
trated in Figure 4a. The smelly aspect of complex ranges
is their evaluation. Simple cell ranges are in the form
top-left:bottom-right, including all cells in between
the two limits. However, the limits in complex ranges
are not the ones specified in the formula: they are cal-
culated as the upper leftmost and lower rightmost cell in
the square that includes all defined cells. For example,
range B2:D4:C1:C5 is equivalent to B1:D5. Understanding
the limits of the range becomes even less intuitive when
vertical or horizontal ranges or named ranges are used,
like in Figure 4b where the range is equivalent to A1:C3.
Moreover, this syntax does not add to expressiveness of the
grammar: each range is still calculated as the cells within
a single square, but without clearly user-defined limits.
The analysis showed that complex ranges are rare: 8,583
formula cells (0.04%) include complex ranges in the Enron
dataset, and they are all defined using three cell locations.

X « & =S5UM(B2:D4:C1:C5)
A 2] C D £

(¥, I I TV S R

[E—

6

(a) A range with four limits, equivalent
to B1:D5 and the area marked gray

K « & =SUMrangeB2C3:A1)
A B C D E

|

(b) A range with a named range, equiv-
alent to A1:C3

(¥, I I TV S R

6

Fig. 4: Examples of references to complex ranges

The intersect operator is included in this discussion
because it is not declared as an operator. Intersection be-
tween two ranges in the grammar is represented implicitly:
by ., a single whitespace. For example, A1:A10,,A1:A5
is equivalent to A1:A5. Using this syntax, intersection
is an implicit range formation operation, belonging to
the (Reference) rule, rather than a normal operation de-
clared as a the (Function). An advantage of this approach
is that it enables more natural language definition of
intersections, e.g. =SUM((Total_Cost Jan):(Total_Cost
Apr.)). An alternative, in our opinion less error-prone
definition of intersection, would be a dedicated build-in
function used explicitly as INTERSECT(A1:A10,A1:A5). In
the two datasets, intersection operations are not common,
as they are found in only 2,829 cases of formula cells.

V. DISCUSSION AND LIMITATIONS

The currently defined Excel grammar is able to parse
99,99% of all formulas from two large and well-known
spreadsheet datasets. In this section, we discuss a variety
of issues that affect the applicability and suitability of our
approach.

A. Version-dependent grammar features

The grammar had been designed as a generic spread-
sheet formula grammar, enriched to include all syntac-
tical features found in the two datasets. Both datasets,
however, contain spreadsheets created by, or converted
to, Excel format. This limits the grammar support for
features that are spreadsheet system-dependent or even
version-dependent. The built-in functions list, for example,
might change across versions, which would make the parser
mistakenly recognize build-in as user-defined functions.

Fig. 5: A natural language formula in Excel 2003

A - f& =Froduct A Store 2
A& | B [¢ | D |
L1 Stare 1 Store 2
| 2 |Product & 100 50
| 3 |Product B 110 =]
| 4 |Product C 120 70
5
B] |
7

Syntactical features have also been deprecated. An
example is regular expressions in formulas. Excel allows
defining formulas that include regular expressions, for ex-
ample =SUM(’S*’1A1) or =SUM(’Sheet?’!A1). However,
in Excel 2010 and up, regular expressions are instantly
resolved—in the example, to the multiple sheet refer-
ence =SUM(Sheet2:Sheet3!A1), summing up all Al cells
between Sheet2 and Sheet3, where the sheets are all
matching sheets, except the one that this formula is on.
This way, in latest versions of Excel, saved spreadsheets
never contain regular expressions.

The use of labels in formulas (referred to as natural lan-
guage formulas) is another feature that was discontinued
in Excel 2007. Labels were the headings that were typed
above columns and before rows, and they could be used in
formulas instead of defined names or cell ranges. Figure 5
shows an example in Excel 2003, where formula =Product
A Store 2 returns the intersection between the cell range
with heading Product A and the one with heading Store
2. This feature is replaced in newer versions of Excel
with the less error-prone named ranges feature. When
processing spreadsheets with newer versions of Excel, the
references that include labels are automatically converted
to cell-only references—in the example, the formula is
converted to =C2. The grammar does not support the use
of labels, and it would mistakenly parse them as named
ranges.

B. Internationalization

Excel formulas differ depending on the language of the
software. For example function arguments are separated
by a semicolon instead of a comma in locales that use the
comma as a decimal separator: the formula =SUM(1.5,A1)
in the English version would be shown as =SOM(1,5;A1)
in the Dutch version. Our grammar is only for the En-
glish locale. Grammars for other locales can be gotten by
replacing delimiters, error values and function names by
their localized versions.

It is worth noting that Excel will always save formulas
in either a locale-independent binary format (Excel 2003
and earlier format) or in its English version (Excel 2007
and later format). When interacting with Excel through its
API two versions of the formula can be read or written:
the English version and the version in the current locale.
This makes a grammar for the English version useful, since
the parser can process all spreadsheets as long as their
formulas are read using the English locale.

C. Rejection of invalid formulas

As stated in the design goals in Section III, the goal
of this grammar is to facilitate analysis of formulas, which
means correctly parsing valid spreadsheet formulas. Re-
jecting invalid formulas is not among the primary goals of
this grammar, as the parser will normally not encounter
invalid formulas in Excel files. Furthermore, while there
exist two extensive datasets of valid formulas, to the best
of our knowledge there are no such datasets of invalid
formulas. As such we expect that the presented grammar is
too broad and will parse a large number of formulas which
are not valid. Using this grammar to parse possibly-invalid
formulas like user-input might thus require additional
safeguards.

The following is a non-exhaustive list of restrictions on
the validity of formulas not encoded into the presented
grammar?:

e Functions cannot have more than 255 arguments.

e Function calls cannot be nested more than 64 levels
deep.

e The row number cannot exceed 1,048,576 (22°) and
the column number cannot exceed XFD (214).

e A formula cannot be longer than 8,192 (2'3) char-
acters.

VI. RELATED WORK

Most related to our research is the work of Badame
and Dig [10] who, as part of their proposed spreadsheet
refactoring approach, presented a grammar for spreadsheet
formulas. However, they do not evaluate their grammar,
and upon inspection one can see that key ingredients are
missing: e.g. external references, intersections and unions
and named ranges. An extension of the same grammar was
used to refactor formulas by Hermans and Dig [9].

Efforts to reverse-engineer a formal language specifica-
tion based on existing artifacts have been used successfully
for other languages, including COBOL [16] and C# [17].

As explained in the introduction, there is a large
body of related work that relies on parsing spreadsheet
formulas in order to analyze spreadsheets. This includes
our own work in which we have created an algorithm
to visualize spreadsheets as dataflow diagrams [5], and
subsequently on detecting smells in spreadsheets [7], [8].
Related approaches exist, for example the work of Cunha
that have worked on code smells [18] and smell-based fault
localization [19]. These papers too analyze spreadsheet
formulas but do not detail whether they use a grammar
or what alternative they use.

VII. CONCLUSION

In this paper we present a grammar for spreadsheet
formulas that we evaluated against over one million unique
formulas and that successfully parses 99.99%, covering a

4These restrictions are in place in the Excel 2007 and later format.
The Excel 2003 and earlier format often has lower limits.

particularly complex set of structures. The grammar was
used to analyze the formulas in the datasets and to mea-
sure the frequency of their characteristics and grammatical
structures. We found uncommon cases in the syntax of
formulas, and we identified complex ranges and the im-
plicit intersect operator as potentially smelly grammatical
constructs.

The grammar is compact, consisting of 20 production
rules and producing processable parse trees, suited for
further manipulation and analysis. We believe that the
grammar is reliable and concise enough to facilitate fur-
ther research on spreadsheet formula code bases. It has
already been applied in other works for analyzing formula
characteristics, calculation chains and code smells and for
applying formula transformations. The grammar parser is
available as open-source software.

A weak point of the presented grammar is that the full
extend of compatibility with the official Microsoft Excel
grammar is unknown. An improvement could be made to
this grammar by comparing it to the official specification,
either by improving compatibility or by extending the
number of known limitations. In general the problem of
determining whether two context-free grammars are equiv-
alent is undecidable, but in practice several techniques
have been successfully used for this purpose [20], [21].

Another improvement could be made by testing the
grammar against datasets containing spreadsheets made in
other spreadsheet programs, and by testing the grammar
against datasets of spreadsheets containing spreadsheets
made in other companies.

REFERENCES

[1] W. Winston, “Executive education opportunities,” OR/MS
Today, vol. 28, no. 4, pp. 8-10, 2001.

[2] L. Bradley and K. McDaid, “Using bayesian statistical methods
to determine the level of error in large spreadsheets,” in Proc.
of ICSE 09, Companion Volume, 2009, pp. 351-354.

[3] C. Scaffidi, M. Shaw, and B. A. Myers, “Estimating the num-
bers of end users and end user programmers,” in Proc. of
VL/HCC ’05, 2005, pp. 207-214.

[4] D. Bell and M. Parr, “Spreadsheets: A research agenda,” SIG-
PLAN Notices, vol. 28, no. 9, pp. 26—28, 1993.

[5] F. Hermans, M. Pinzger, and A. van Deursen, “Supporting
professional spreadsheet users by generating leveled dataflow
diagrams,” in Proc. of ICSE ’11, 2011, pp. 451-460.

[6] K. Shiozawa, K. Okada, and Y. Matsushita, “3d interactive
visualization for inter-cell dependencies of spreadsheets,” in
Proceedings of The IEEFE Information Visualization Conference
(INFOVIS). 1EEE, 1999, pp. 79-83.

[7] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting and
visualizing inter-worksheet smells in spreadsheets,” in Proc. of
ICSE ’12, 2012, pp. 441-451.

[8] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting code
smells in spreadsheet formulas,” in Proc. of ICSM ’12, 2012.

[9] F. Hermans and D. Dig, “Bumblebee: A refactoring environ-
ment for spreadsheet formulas,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE, 2014, pp. 747-750.

[10] S. Badame and D. Dig, “Refactoring meets spreadsheet for-
mulas,” in Software Maintenance (ICSM), 2012 28th IEEE
International Conference on. IEEE, 2012, pp. 399-409.

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

19]

20]

(21]

M. Fisher and G. Rothermel, “The euses spreadsheet corpus:
A shared resource for supporting experimentation with
spreadsheet dependability mechanisms,” SIGSOFT Softw.
Eng. Notes, vol. 30, no. 4, pp. 1-5, May 2005. [Online].
Available: http://doi.acm.org/10.1145/1082983.1083242

B. Klimt and Y. Yang, “The enron corpus: A new dataset
for email classification research,” in Machine Learning: ECML
2004, ser. Lecture Notes in Computer Science, J.-F. Boulicaut,
F. Esposito, F. Giannotti, and D. Pedreschi, Eds. Springer
Berlin Heidelberg, 2004, vol. 3201, pp. 217-226. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-30115-8_ 22

F. Hermans, “Excel turing machine.” [Online]. Available:
http://www.felienne.com/archives/2974

Microsoft, “Excel (.xlsx) extensions to the
office open xml spreadsheetml file for-
mat.” [Online]. Available: https://msdn.microsoft.com/en-

us/library/dd922181(v=office.12).aspx

Microsoft, “Excel functions (alphabetical).” [Online]. Avail-
able: https://support.office.com/en-in/article/Excel-functions-
alphabetical-b3944572-255d-4efb-bb96-c6d90033e188

M. Van Den Brand, M. Sellink, and C. Verhoef, “Obtaining a
cobol grammar from legacy code for reengineering purposes,” in
Proceedings of the 2nd International Workshop on the Theory
and Practice of Algebraic Specifications, electronic Workshops
in Computing. Springer verlag. Citeseer, 1997.

V. V. Zaytsev, “Recovery, convergence and documentation of
languages,” Ph.D. dissertation, Vrije Universiteit, 2010.

J. Cunha, J. P. Fernandes, J. Mendes, and J. S. Hugo Pacheco,
“Towards a Catalog of Spreadsheet Smells,” in The 12th Inter-
national Conference on Computational Science and Its Appli-
cations, ser. ICCSA’12, vol. 7336. LNCS, 2012, pp. 202-216.

R. Abreu, J. Cunha, J. a. P. Fernandes, P. Martins, A. Perez,
and J. a. Saraiva, “Smelling faults in spreadsheets,” in Proceed-
ings of the 30th IEEE International Conference on Software
Maintenance and Evolution, ser. ICSME ’'14. Washington,
DC, USA: IEEE Computer Society, 2014, to appear.

R. Ladmmel and V. Zaytsev, “An introduction to grammar
convergence,” in Integrated formal methods. Springer, 2009,

pp. 246-260.

B. Fischer, R. Lammel, and V. Zaytsev, “Comparison of
context-free grammars based on parsing generated test data,”
in Software Language Engineering. Springer, 2012, pp. 324—
343.

