
Analysis of the false positive rates of the Nelson rules

July 31, 2015

1 Background

The Nelson rules are a set of rules to determine if a measured variable is out of control.
More information on the wikipedia page

2 Setup

We will generate a set of pseudo-random numbers with a mean of 0 and a standard deviation of 1. We can
then see how frequently each rule is triggered from our series.

In [7]: from IPython.display import HTML

from random import normalvariate

from pandas import DataFrame

def generate_sequence(length):

return [normalvariate(0,1) for i in xrange(length)]

def simulate(rule, n, sequence_length):

failures = 0

for iteration in xrange(n):

if rule(generate_sequence(sequence_length)):

failures += 1

return failures

def failure_proportion(rule, sequence_length):

return simulate(rule, 10000, sequence_length) / 10000.0

def failure_table(rule):

columns = ["Sequence length", "Failure rate"]

data = []

for sequence_length in [10,20,50,100,200,500]:

failures = failure_proportion(rule, sequence_length) * 100

data.append([sequence_length, "%2.2f%%" % failures])

return DataFrame(data, columns=columns)

3 Analysis

A simulation of each rule over different sequence lengths will be run 10,000 times. If the rule is triggered
at least once in a sequence, that will count as one failure. Rules broken multiple times will not count as
multiple failures.

1

https://en.wikipedia.org/wiki/Nelson_rules

3.1 Rule 1

One point is more than 3 standard deviations from the mean.

In [8]: def rule_1(sequence):

return any(map(lambda value: abs(value) > 3, sequence))

failure_table(rule_1)

Out[8]: Sequence length Failure rate

0 10 2.86%

1 20 5.31%

2 50 12.49%

3 100 22.66%

4 200 41.40%

5 500 74.14%

3.2 Rule 2

Nine (or more) points in a row are on the same side of the mean.

In [9]: def rule_2(sequence):

over_mean = map(lambda value: value > 0, sequence)

under_mean = map(lambda value: value <= 0, sequence)

for i in range(len(sequence) - 9):

if all(over_mean[i:i + 9]) or all(under_mean[i:i + 9]):

return True

return False

failure_table(rule_2)

Out[9]: Sequence length Failure rate

0 10 0.34%

1 20 2.39%

2 50 8.13%

3 100 17.21%

4 200 32.27%

5 500 62.30%

3.3 Rule 3

Six (or more) points in a row are continually increasing (or decreasing).

In [10]: def rule_3(sequence):

pairs = zip(sequence, sequence[1:])

going_up = map(lambda (previous, current): previous < current, pairs)

for i in range(len(going_up) - 6):

if sum(going_up[i:i+6]) == 6:

return True

return False

failure_table(rule_3)

Out[10]: Sequence length Failure rate

0 10 0.05%

1 20 0.21%

2

2 50 0.77%

3 100 1.57%

4 200 3.43%

5 500 8.11%

3.4 Rule 4

Fourteen (or more) points in a row alternate in direction, increasing then decreasing.

In [11]: def rule_4(sequence):

pairs = zip(sequence, sequence[1:])

going_up = map(lambda (previous, current): previous < current, pairs)

alternating = map(lambda (previous, current): previous != current, zip(going_up, going_up[1:]))

for i in range(len(alternating) - 12):

if sum(alternating[i:i+12]) == 12:

return True

return False

failure_table(rule_4)

Out[11]: Sequence length Failure rate

0 10 0.00%

1 20 1.28%

2 50 6.19%

3 100 13.26%

4 200 27.57%

5 500 56.50%

3.5 Rule 5

Two (or three) out of three points in a row are more than 2 standard deviations from the mean in the same
direction.

In [17]: def rule_5(sequence):

for i in range(len(sequence) - 3):

triplet = sorted(sequence[i:i + 3])

if triplet[0] < -2 and triplet[1] < -2:

return True

if triplet[1] > 2 and triplet[2] > 2:

return True

return False

failure_table(rule_5)

Out[17]: Sequence length Failure rate

0 10 1.46%

1 20 3.91%

2 50 8.71%

3 100 17.05%

4 200 32.49%

5 500 62.64%

3.6 Rule 6

Four (or five) out of five points in a row are more than 1 standard deviation from the mean in the same
direction.

3

In [13]: def rule_6(sequence):

for i in range(len(sequence) - 5):

quint = sorted(sequence[i:i + 5])

if all(map(lambda value: value < -1, quint[:4])):

return True

if all(map(lambda value: value > 1, quint[1:])):

return True

return False

failure_table(rule_6)

Out[13]: Sequence length Failure rate

0 10 1.83%

1 20 5.38%

2 50 14.80%

3 100 28.19%

4 200 50.50%

5 500 82.25%

3.7 Rule 7

Fifteen points in a row are all within 1 standard deviation of the mean on either side of the mean.

In [14]: def rule_7(sequence):

for i in range(len(sequence) - 15):

block_of_15 = sorted(sequence[i:i + 15])

if all(map(lambda value: abs(value) < 1, block_of_15)):

return True

return False

failure_table(rule_7)

Out[14]: Sequence length Failure rate

0 10 0.00%

1 20 0.79%

2 50 3.79%

3 100 8.85%

4 200 18.18%

5 500 40.28%

3.8 Rule 8

Eight points in a row exist with none within 1 standard deviation of the mean and the points are in both
directions from the mean.

In [15]: def rule_8(sequence):

for i in range(len(sequence) - 8):

block_of_8 = sorted(sequence[i:i + 8])

if all(map(lambda value: abs(value) > 1, block_of_8)):

return True

return False

failure_table(rule_8)

Out[15]: Sequence length Failure rate

0 10 0.02%

4

1 20 0.13%

2 50 0.31%

3 100 0.74%

4 200 1.15%

5 500 3.24%

3.9 Combined rules

In [18]: def all_rules(sequence):

for rule in [rule_1, rule_2, rule_3, rule_4, rule_5, rule_6, rule_7, rule_8]:

if rule(sequence):

return True

return False

failure_table(all_rules)

Out[18]: Sequence length Failure rate

0 10 6.16%

1 20 16.53%

2 50 41.74%

3 100 68.94%

4 200 91.58%

5 500 99.74%

In []:

5

	Background
	Setup
	Analysis
	Rule 1
	Rule 2
	Rule 3
	Rule 4
	Rule 5
	Rule 6
	Rule 7
	Rule 8
	Combined rules

