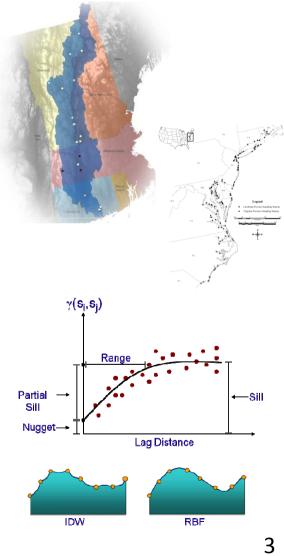


www.epa.gov/research

Who am I and why am I here: Lakes, Linked Data, and R

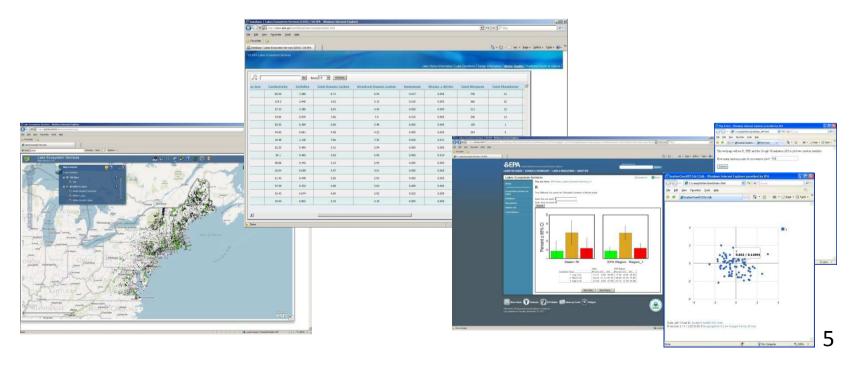
Jeffrey W. Hollister US EPA, Atlantic Ecology Division Semantic Web/Linked Data Users Community 15 August 2012


Talk Outline

- Introduction
 - Who am I?
 - Why am I here?
- Lakes
 - Lake Volume
 - Lake Depth
 - Linked Data Plans
- R
 - Overview
 - How I use it

Who am I?

- Landscape Ecologist
 - GIS and Statistics
 - Research: Landscape Structure and Water Quality
- Past Work Experience
 - J.W. Jones Ecological Research Center
 - National Ecological Observatory Network (NEON)
 - Introduced to Ecoinformatics
- Current Position
 - Research Ecologist with US EPA
 - Introduced to Reproducible Research —


Who am I?

- My Agency and Mission
 - US Environmental Protection Agency
 - Office of Research and Development
 - National Health and Environmental Effects Research Lab,
 - » Atlantic Ecology Division
 - Monitoring and Assessment Branch
 - Research Ecologist

Why am I here?

- New Focus
 - Informatics, Decision Support, Tool Development

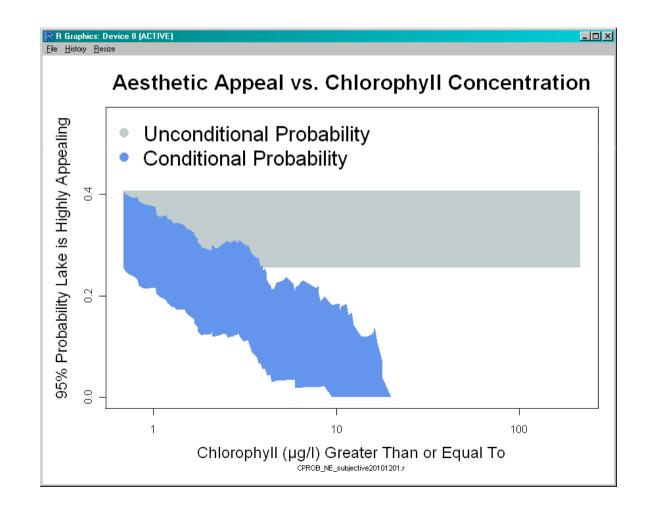
Northeast Lakes Projects

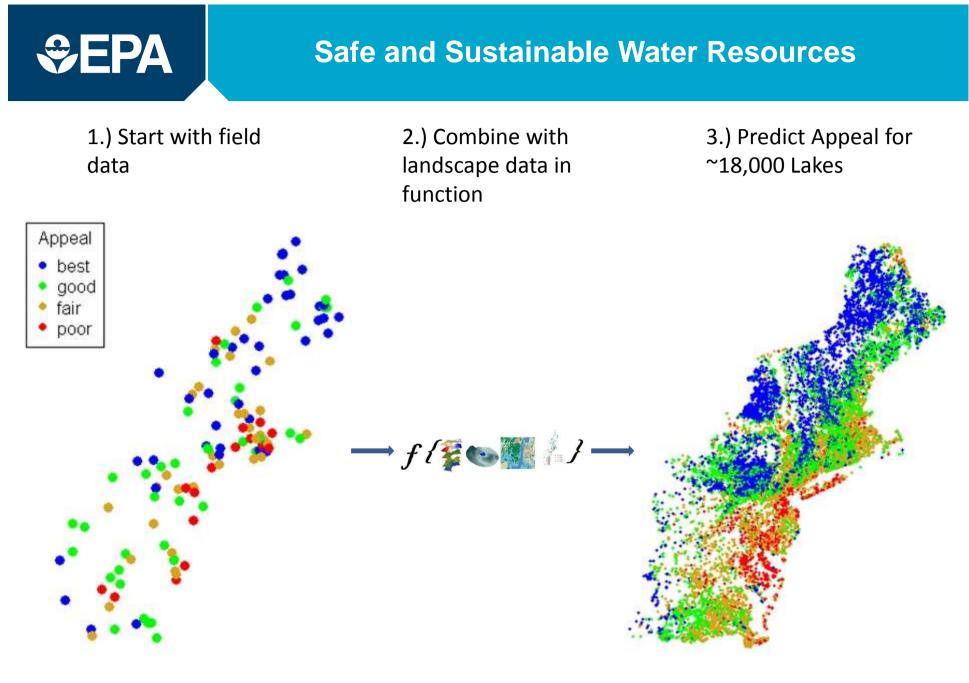
- Mulitple Research Plans and Years
 - 2007-Present
- Common Denominators
 - Lakes
 - Nutrients
- Research Questions:
 - How do changes in nutrients change delivery of ecosystem services/risk associated with Cyanobacteria?
- Project Goals:
 - Data Sharing
 - Reproducible Research
 - Decision Support

Ecosystem Services in Lakes

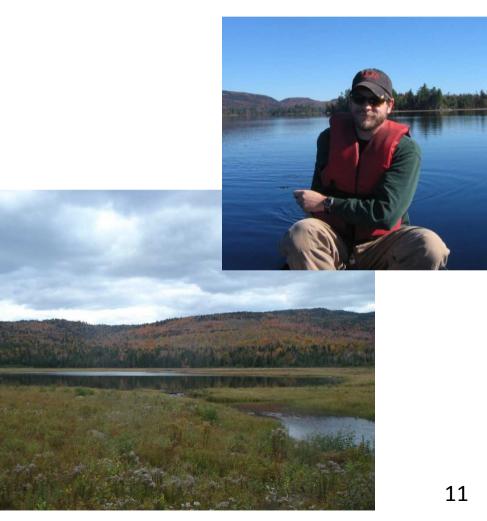
- Swimming
- Fishing
- Drinking Water
- Property Values
- Existence Value
- Aesthetics

How are lakes perceived in the National Lakes Assessment?


- Aesthetic Appeal
- Disturbance
- Biotic Integrity
- Recreational Value
- Swimmability

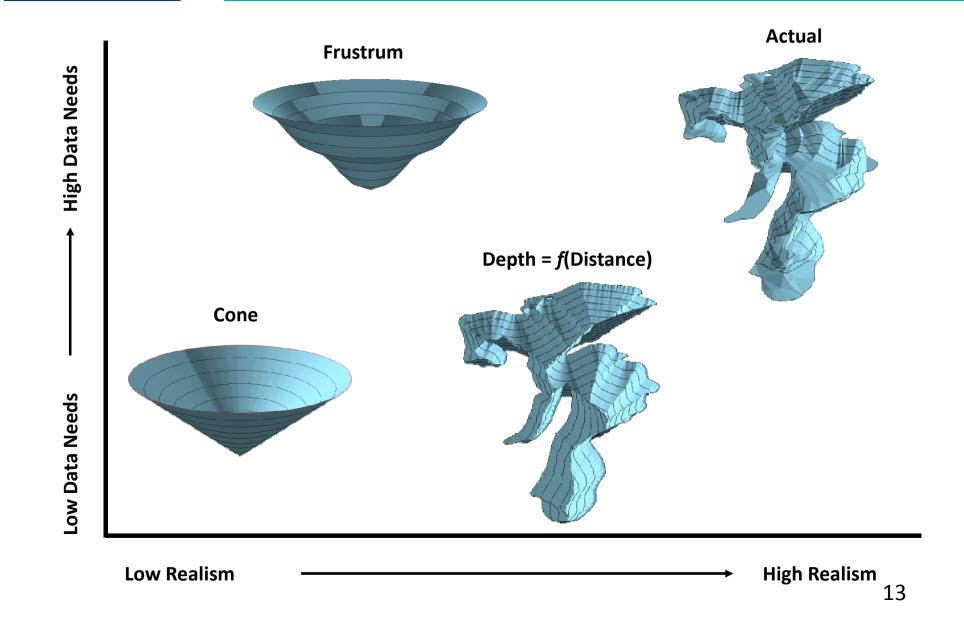

Written Comments from Lakes in Highest Appeal Categories

Nutrients and Ecosystem Services


9

Lake Morphometry

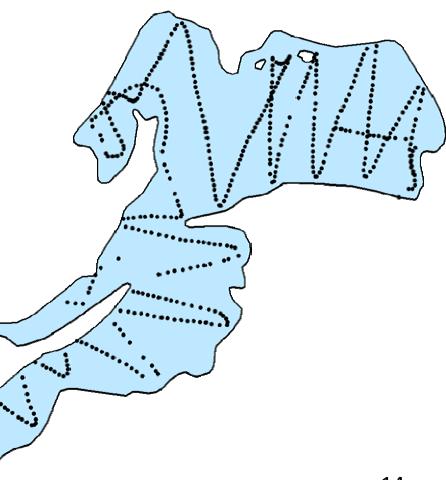
- Ordered Logit Models
 - Need Residence time
- Existing data
 - Limited resources
 - -~18,000 Lakes



Question #1

What is the best way to estimate lake volume given, lake shoreline and maximum depth?

Citation: Hollister, J. W., W.B. Milstead (2010). Using GIS to Estimate Lake Volume from Limited Data. *Lake and Reservoir Management*. 26(3)194-199. Contribution no. AED-10-018.



Safe and Sustainable Water Resources

Methods

Partridge Lake Bathymetry Data

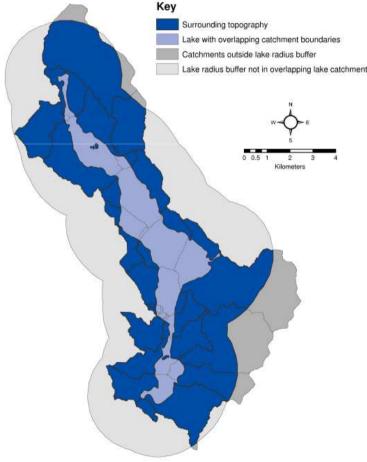
- Accuracy Assessment
 - Bathymetry data
 - NH DES for 132 lakes
 - Created TIN for each lake
 - Calculated volumes
 - Cone v TIN
 - GIS Method v TIN

Results - Volume Error Analysis

Method	RMSD	MD	MAD	P(Better)
GIS – All Lakes	3,287,360	8622	200734	0.59
Cone – All Lakes	6,975,740	608967	225502	0.41

€ EPA

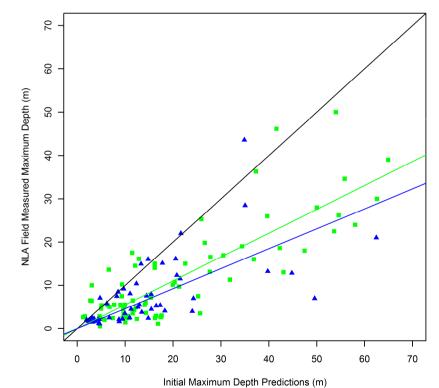
Estimating Maximum Lake Depth: Question #2


- Method in Question #1 assumes a measurement of maximum lake depth is available
- Is it possible to create a reasonable estimate of lake depth from the topography surrounding a lake?

Citation: Hollister, J. W., W.B. Milstead, M.A. Urrutia (2011). Predicting Maximum Lake Depth from Surrounding Topography. *PLoS ONE* 6(9): e25764. doi:10.1371/journal.pone.0025764. Contribution no. AED-11-013

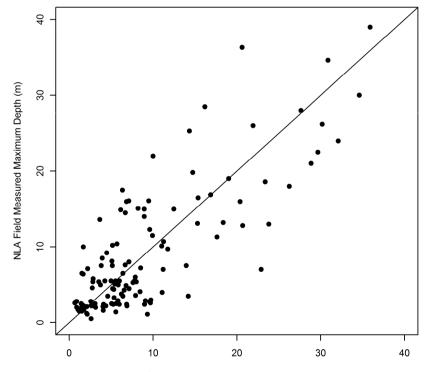
€PA

Predicting Maximum Lake Depth


- Select surrounding topography
- Determine median slope
- Determine maximum distance in lake
- Depth
 - Max.Dist * Median.Slope

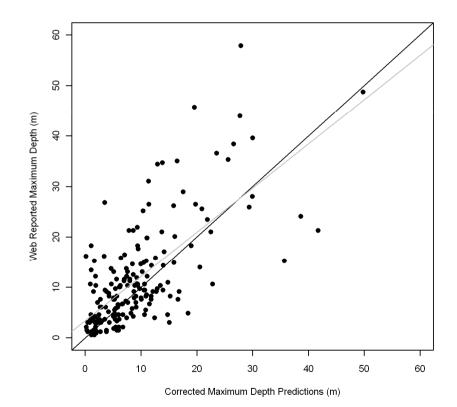
Assessing the method

- Compare to measured data
 - National Lakes Assessment Data
 - Web reported depths
- Over predicts
- Fit NLA model
- Use NLA model to correct



Assessing the method

• Compare to measured data


- National Lakes Assessment Data
- Web reported depths
- Over predicts
- Fit NLA model
- Use NLA model to correct

Corrected Maximum Depth Predictions (m)

Web Depth Comparisons

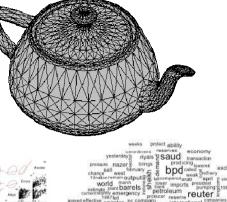
20

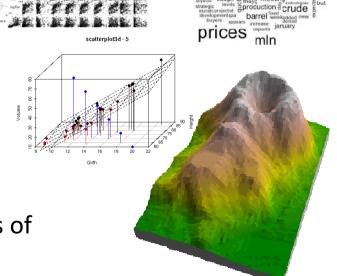
Linked Data and Lakes

- Starting a pilot
 - Convert Lake Morphometry data to Linked Data
 - Working with Mike Pendelton and David Smith
- Why?
 - Education (mine)
 - Interest
 - Potential for many more datasets
 - NLA
 - Wildlife
 - Merganser

R

- Overview
 - Background
 - Extending R
 - Linked Data and Semantic Web
- How I use it?


Safe and Sustainable Water Resources



R: Overview

- What is R?
 - "Language and environment for statistical computing and graphics"
 - Similar to the S language
 - Extensible
- Why use R?
 - FREE!
 - Publication quality graphics
 - Get only the results you want (i.e. no reams of output)

Examples borrowed from: http://addictedtor.free.fr/graphiques/

R: Overview

- Why is it named R?
 - First name of the original authors
 - Ross Ihaka and Robert Gentleman
 - Play on the S+ language
 - S- as a opposed to S+
- Who wrote/writes/contributes to R?
 - R Core Team
 - Anybody
- Is it reliable?
 - Open source = Peer review

R: Overview

- Expanding R:
 - Packages
 - Contributed collections of analytical tools
 - Extends the scope and utility of R
 - Currently 3978 packages available
 - Task Views
 - Currently 30 (e.g. Environemetrics, HighPerformanceComputing, Spatial, etc.)
 - None (yet) related directly to Semantic Web and Linked Data...
 - R, not just for stats anymore
 - GIS (sp, rgdal, raster, rgeos, ...)
 - Web and Related (Brew (+ rApache module), XML, rCurl, ...)
 - Linked Data Packages: (SPARQL, rrdf)

More Information

- R Install
 - <u>http://cran.r-project.org/doc/manuals/R-intro.pdf</u>
- Websites
 - R <u>http://www.r-project.org/</u>
 - CRAN <u>http://cran.r-project.org/</u>
 - simpleR <u>http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf</u>
- Listservs
 - R-help <u>https://stat.ethz.ch/mailman/listinfo/r-help</u>
 - R-sig-ecology <u>https://stat.ethz.ch/mailman/listinfo/r-sig-ecology</u>
- Books
 - Venables and Ripley, Modern Applied Statistics with S
 - Dalgaard, Introductory Statistics with R
 - Many, many Others!
- Journal
 - Journal of Statistical Software <u>http://www.jstatsoft.org/</u>

R: How I use It?

- Basic Scripts and New Functions
- Demo

R: How I use It?

- Managing scientific workflow
 - From R
 - From Python

.

R	Script
Tinn-R - [D:\DATA\EcoServices\LakeVolume\LakeVolumeManuscript\supplementals\Supp1RScript.R]	1/2 Tinn-R - [D:\DATA\EcoServices\LakeVolume\LakeVolumeManuscript\supp
<pre>####################################</pre>	<pre>#</pre>
<pre>#Leads required Libraries require(maptcols) require(rgCal) require(RPyGeo) #Reads in bathymetry points and presetes Opatial Foints Data Frame xdf-read.csvtbathypts) xccordx-ccordinates(data.frame(xdf[,i].xcf[,4])) xspdf<-SpatialFointsDataFrame(xcord,xdf,</pre>	<pre>TINVolume<-xvcl.,7, print(paste("TINVolume",TINVolume")) } if(Conc==T){ ConeVolume<-(lakep[["AREA"]_*MAXLEFTH)/3 print(paste("ConeVolume", ConeVolume))</pre>
<pre>MAXDEPTHe-max(xspdf[[5]].na.rm=T) #Road in NH Lakes shapefiles Lakepo-reacOGR(lakepoly,gsub(".shp","",lakepoly)) xspdfopTcansform(xspdf.CB8(prof4string(lakep)))</pre>	}
<pre>#Wet up rpygeo and R parameters assign!"rpygeo.env".rpygeo.build.env(workspace-getwd().python.path-PyPath, overwriteoutput mask="lakep",cellsize=cell,extensions="3d").envir = .GlobalEr</pre>	10)
<pre>#Sotimates Lake Volume based on Max and Dist if(Dist==?){ croad-cell*cell rpyged.geoprocessor("PolygonToLine", arg=list(lakepoly, "xx.shp")) rpyged.EucDistance.se("xx.shp", "xxdist", "#", cell) rpyged.EucDistance.se("xx.shp", "xxdist", "#", cell) rpyged.eucDistance.se("xx.shp", "xxdist", "#", cell) rpyged.eucDistance.se("xx.shp"); rayg=list("xxdist", lakepoly, "xxdist")) assign("lakedist", readGDAL("xxdist1")) MAXDISTc-max(lakedist[["band1"]], ra.rm=") DistanceVolumec.seum((lakecist)")*carea, na.rm=T)</pre>	

lementals\Supp1RScript.R]

2/2

29

hard lines, calculates and returns Shapefile") Shapefile") env) points true; ","lakep",".shp SHORE pycec.er.v)

Python Script

TextS1.py

Text51.py	TextSI.py Page 2 Page 2
import time	SlopeOut = arcpy.sa.Slope(outelev, "PERCENT_RISE")
<pre>start = time.clock()</pre>	
import sys, os	r('memory.limit(4000)')
import arcpy	r.setwd(arcpy.env.workspace)
arcpy.CheckOutExtension("Spatial")	r('unionshp<-readOGR("xxunion.shp","xxunion")')
import rpy2.robjects as robjects	r('slopegrd<-readGDAL("'+str(SlopeOut).replace("\\","/")+'")')
import math	r('distgrd<-readGDAL("'+str(LakeRastOut).replace("\\","/")+'")')
r=robjects.r	r('lake<-unionshp[["FID_xxlake"]]==0,]')
r("library(rgdal)")	r('land<-unionshp[unionshp[""FID_xxlake"]]==-1,]')
#These options can be set to desired workspace and names of input elevation, catchment, and lake datasets	r('lakeovl<-overlay(distgrd,lake)')
#Currently set to work with examples in Dataset S1 of Hollister, Milstead, and Urrutia (2011)	r(
#Workspace is created when example dataset are extracted	'COMIDlnktblland<-data.frame(index=c(1:length(land[["COMID"]])),COMID=land[["COMID"]][1:length(land[[
arcpy.env.overwriteOutput=True	"COMID"]])])))
arcpy.env.workspace=r"C:\HollisterMilsteadUrrutia\DatasetS1"	Γ(
inlakes -"exampleLakes.shp"	'COMIDlnktbllake<-data.frame(index-c(1:length(lake[["COMID"]])),COMID-lake[["COMID"]][1:length(lake[[
inelev -"exampleNED"	"COMID"]])])))
incatch ="exampleCatchment.shp"	r(Lalmaland, marga(data frama(ardindar, a(1,1)angth(landarl)) indar landarl) (CMTD)althland by "indar").
<pre>outfile = "C:/HollisterMilsteadUrrutia/DatasetS1/exampleOutput.csv"</pre>	'slopeland<-merge(data.frame(grdindex=c(1:length(landovl)),index=landovl),COMIDlnktblland,by="index") ')
#Do not change the following output names, these are used in the script and would changes would	r(
cause script to fail	'distlake<-merge(data.frame(grdindex=c(1:length(lakeovl)),index=lakeovl),COMIDInktbllake,by="index")'
outlake = "xxlake.shp"	
outbuffer = "AAlaheb.shp"	#Matches Catchments: First Catchments in lake to catchments on land #Removes catchments in buffer but not intersecting lake
outclip = "xxlakec.shp" outunion = "xxunion.shp"	#xemoves catconments in builter but not intersecting lake #Second matches catchments on land to those in lkae
<pre>outelev = "xxelev" outslope = "xxslope"</pre>	#This removes catchments entirely internal to the lake: Rare but caused by artificial flow paths in large (usually) lakes
outlakeline = "xxlakel.shp"	paths in farge (usuality) fares ['('slopeland<-slopeland[slopeland\$COMID%in%distlake\$COMID,]')
outlakeline = "xxlake"	r('distlake<-distlaka(distlake&COUND\$in%slopeland\$COUND;)')
outlater = "xxtaker"	r(
outdist = "Xxdistl"	'slopedfmerge(data.frame(slope=slopegrd[["band1"]][slopeland\$grdindex],grdindex=slopeland\$grdindex)
	stopeland, by="grdindex")[,c(2,4)]')
numRows = float(arcpy.GetCount management(inlakes)[0])	r(r())
<pre>time = time.clock()</pre>	'distdf<-merge(data.frame(dist=distgrd[["band1"]][distlake\$grdindex],grdindex=distlake\$grdindex),dist
ant = 0	lake,by="grdindex") [,c(2,4)] ')
cnt2 = 0	r('distmax<-max(distdf[,1],na.rm=T)')
lakes = arcpy.SearchCursor(inlakes)	r('slopemedian<-median(slopedf[,1],na.rm=T)')
if os.path.exists(outfile)==True:	r('xdf<-data.frame(WB ID=lake\$WB ID,predmaxdepth=distmax*(slopemedian/100))')
f = open(outfile,'a')	r('save.image()')
else:	
f = open(outfile, 'w')	f.write(str(r.xdf[0][0])+","+str(r.xdf[1][0])+"\n")
f.write('WB ID, PredMaxDepth\n')	cnt=cnt+1
f.close()	perc = 100*(cnt/numRows)
f= open(outfile,'a')	elaps = time.clock()-timer
for lake in lakes:	cnt2 = cnt2 + 1
r('test<-read.csv("'+outfile+'")')	if elaps >= 60:
test=r('sum(test[,1]%in%'+str(lake.getValue("WB_ID"))+')')[0]	
if test > 0:	<pre>timer = time.clock()</pre>
cnt=cnt+1	perlaketime = elaps/cnt2
cnt2=cnt2+1	
if test == 0:	<pre>print str(round(perc,2)) + "% of the lakes have been processed."</pre>
sqlqry='"WB_ID"='+str(lake.getValue("WB_ID"))	<pre>print "Currently processing at approximately " + str(round(perlaketime,2)) + " seconds</pre>
arcpy.Select_analysis(inlakes,outlake,sqlqry)	per lake."
arcpy.PolygonToLine_management(outlake,outlakeline)	<pre>print "Approximately " + str(round(((numRows-cnt)*perlaketime)/3600,2)) + " hour(s)</pre>
<pre>DistOut = arcpy.sa.EucDistance(outlakeline,"#",30)</pre>	remaining."
#DistOut.save(outdist)	<pre>print(str(r.xdf[0][0])+","+str(r.xdf[1][0]))</pre>
arcpy.FeatureToRaster_conversion(outlake, "WB_ID",outlaker,30)	cnt2 = 0
LakeRastOut = arcpy.sa.ExtractByMask(DistOut,outlaker)	
lakebuff = float(arcpy.GetRasterProperties_management(LakeRastOut,"MAXIMUM")[0])	for feat in arcpy.ListFeatureClasses("xx*"):
if lakebuff<100:	arcpy.Delete_management(feat)
lakebuff=100	<pre>for rast in arcpy.ListRasters("xx*"):</pre>
arcpy.Buffer_analysis(outlake,outbuffer,lakebuff)	arcpy.Delete_management(rast)
	f.close()
arcpy.Clip_analysis(incatch,outbuffer,outclip)	
arcpy.Clip_analysis(incatch,outbuffer,outclip) arcpy.Union_analysis(outlake+","+outbuffer+";"+outclip,outunion) arcpy.Clip_management(inelev,"#",outelev,outbuffer,"#","ClippingGeometry")	end = time.clock() print (end-start)/60

TextS1.py import time

R: How I use It?

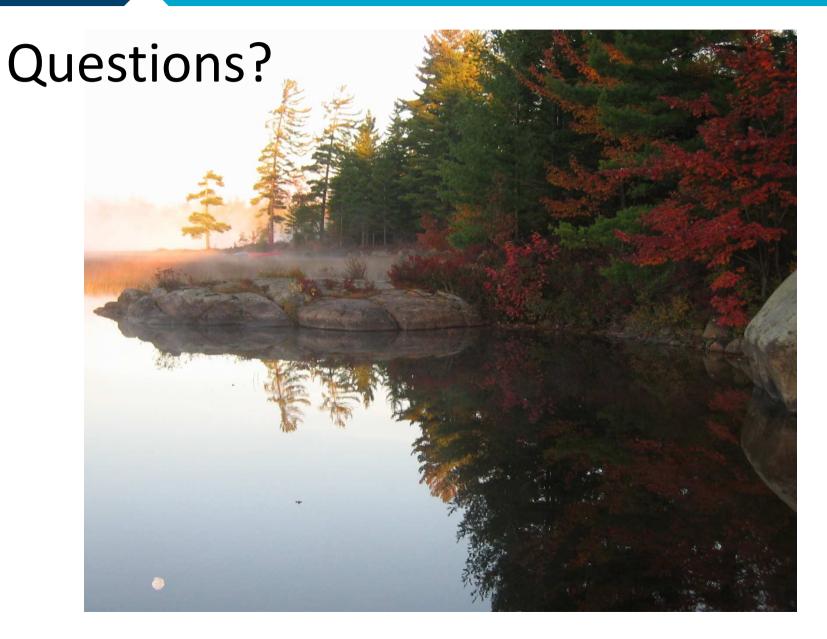
Web - cprob/index html - Eclir

- Check out ggplot2
- <u>http://yeroon.net/ggplot2</u>

le <u>E</u> dit <u>S</u> ource <u>N</u> avigate Se <u>a</u> rch <u>P</u> roject <u>R</u> un <u>W</u> ir	iow Help
3 * 🖂 🔄 📾 🚸 * 🔕 * 🔌 😕 🛷 *	🎱 💇 📽 😫 📲 🖗 🔹 🗇 🔶 🔹 🖂 🖄
	<pre>113 <input name="PDir" type="radio" value="lt"/>Less Than 114 </pre>
html/body/#text	Writable Smart Insert 85 : 29
Help - Eclipse	Threader Share have 03.25

Q O X

R: How I use It?


- R for GIS
- Demo

Acknowledgements

- NLA Field Crews, Collaborators, & Analysis Team
- Richard Moore, USGS, MRB1 SPARROW
- Hilary Snook, Toby Stover & Carol Elliot, EPA, NELP
- John Kiddon, Jane Copeland, & the AED Aquatic Ecosystem Services Research Group
- Mike Pendleton, David Smith and George Thomas

