Nutrients, Ecosystem Services, and Human Health in Northeastern Lakes and Ponds

Jeffrey W. Hollister, W. Bryan Milstead, Kristen C. Hychka, Henry A. Walker, Jane Copeland Presented at: Western Connecticut State University, Dep. Of Biology Seminar Series 30 November 2011

Acknowledgements

- NLA Field Crews, Collaborators, & Analysis Team
- Richard Moore, USGS, MRB1 SPARROW
- Hilary Snook, Toby Stover & Carol Elliot, EPA, NELP
- Robin Dennis, EPA, CMAQ Model
- John Kiddon, Jane Copeland, Marisa Mazzotta, & the AED Aquatic Ecosystem Services Research Group
- Harry Buffum, Michael Charpentier, Melissa Hughes, David Bender, & Cara Cormier-Raytheon & SRA Contractors
- Emi Uchida, Jim Opalach, & Susan Gorelick (URI)

Talk Outline

- Background
- Northeast Lakes Project
- Modeling Lake Appeal
- Lake Volume and Depth
- Beneficiaries
- Decision Support
- Cyanobacteria Project

Background

- Ecosystem Services Research Program (ESRP)
 2007-2011
- Safe and Sustainable Water Resources (SSWR)
 2012-??
- Common Denominator
 - Lakes
 - Nutrients

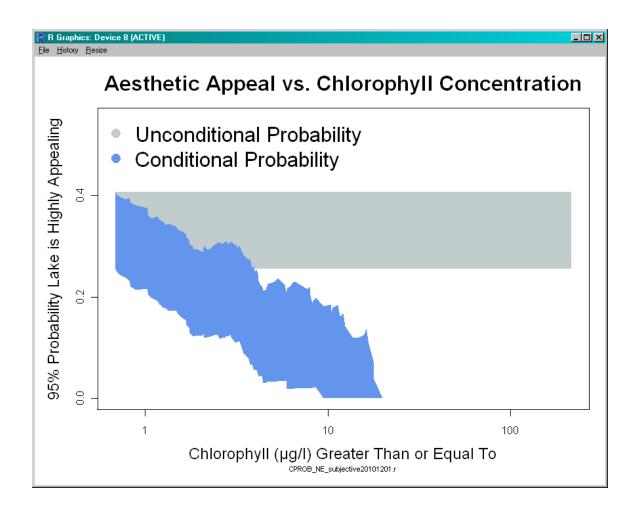
Northeast Lakes Ecosystem Services Project

Project on Lakes Ecosystem Services

- Research Questions:
 - How do changes in nutrients change delivery of ecosystem services?
 - How do spatial arrangement of services impact delivery of those services?
- Project Goals:
 - Data Sharing
 - Reproducible Research
 - Decision Support

Ecosystem Services in Lakes

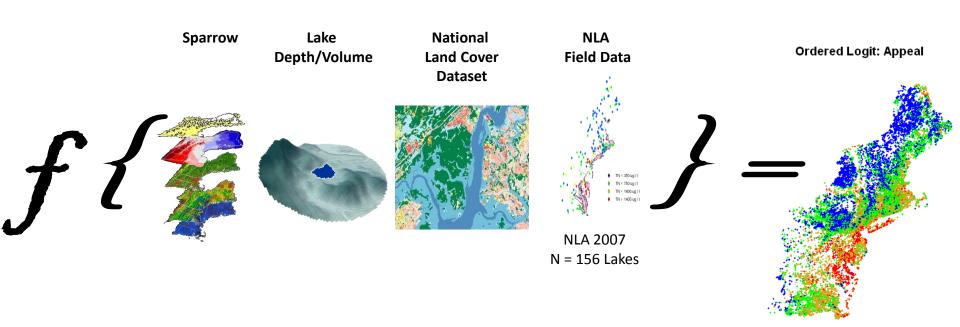
- Swimming
- Fishing
- Drinking Water
- Property Values
- Existence Value
- Aesthetics


How are lakes perceived in the National Lakes Assessment?

- Aesthetic Appeal
- Disturbance
- Biotic Integrity
- Recreational Value
- Swimmability

Written Comments from Lakes in Highest Appeal Categories

Nutrients and Ecosystem Services

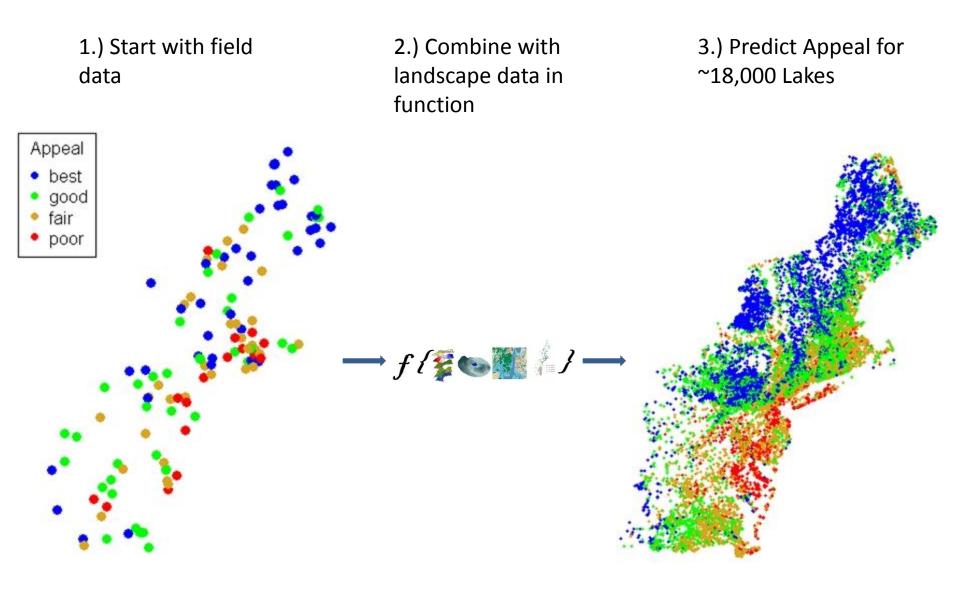


9

Modeling Lake Aesthetics/Appeal

Modeling Lakes Aesthetics

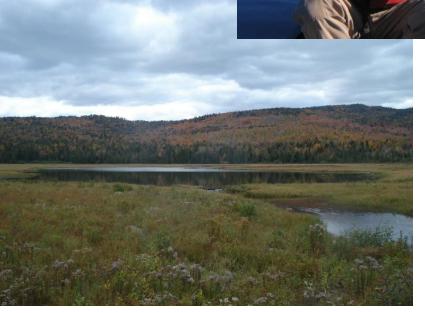
Ordered Logit Model


Predictor Variables

- Chlorophyll *a* (µg/I)
- Elevation (m)
- Shoreline (m)
- Flow
- Shoreline Development
- Area (m²)
- Max Depth (m)
- Volume (m³)
- Hydraulic Residence Time (years)
- Proximity to People

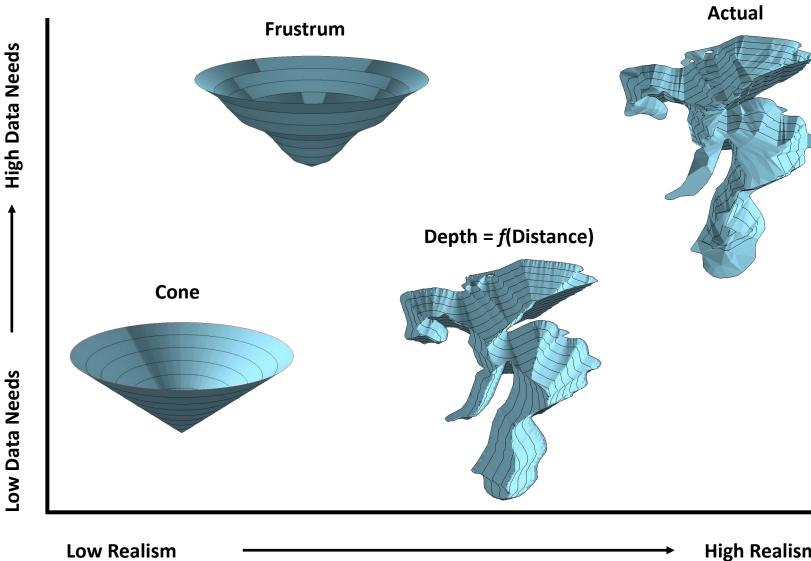
Response Variables

- Appeal Score
- Pristine Score
- Recreation Score
- Swimming Score
- Biotic Integrity Score
- Secchi Depth Class
- Microcystin Detected
- Cyanobacteria Count Class


Estimating Maximum Lake Depth and Lake Volume

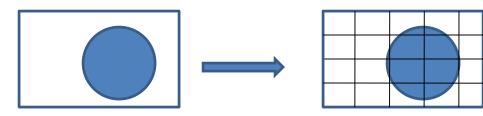
Background

- Ordered Logit Models
 Need Residence time
- Existing data
 - Limited resources
 - -~18,000 Lakes



Problem #1

What is the best way to estimate lake volume given, lake shoreline and maximum depth?


Citation: Hollister, J. W., W.B. Milstead (2010). Using GIS to Estimate Lake Volume from Limited Data. *Lake and Reservoir Management*. 26(3)194-199. Contribution no. AED-10-018.

Methods (aka The GIS Method)

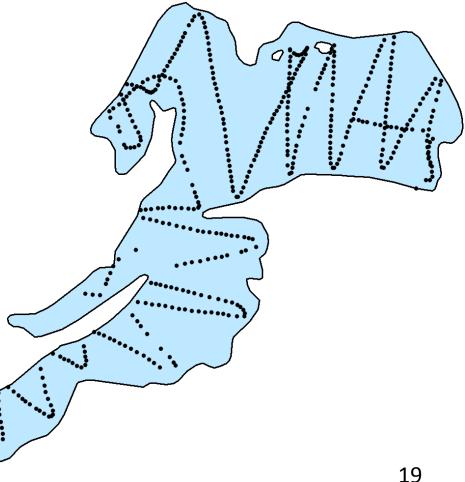
- Assume that depth is function of distance from shore
- Rasterize Lake

• Simple linear transformation based on assumption

$$Depth = PixelDist * \frac{MaximumDepth}{MaximumDistance}$$

• Calculate volume

$$LakeVolume = \sum CellArea * Depth_{i,j}$$


18

Methods

Partridge Lake Bathymetry Data

- Accuracy Assessment
 - Bathymetry data
 - NH DES for 132 lakes
 - Created TIN for each lake
 - Calculated volumes
 - Cone v TIN
 - GIS Method v TIN

Results - Volume Error Analysis

Method	RMSD	MD	MAD	P(Better)
GIS – All Lakes	3,287,360	8622	200734	0.59
Cone – All Lakes	6,975,740	608967	225502	0.41

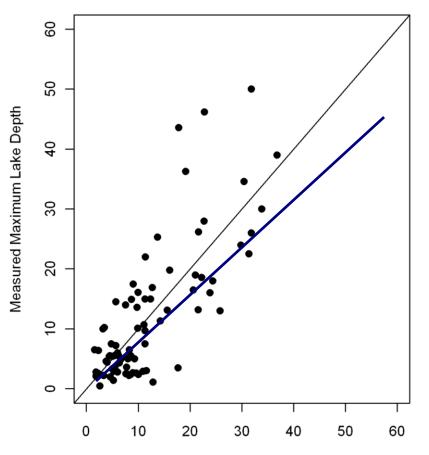
Problem #2

- Method in Problem #1 assumes a measurement of maximum lake depth is available
- Is it possible to create a reasonable estimate of lake depth from the topography surrounding a lake?

Citation: Hollister, J. W., W.B. Milstead, M.A. Urrutia (2011). Predicting Maximum Lake Depth from Surrounding Topography. *PLoS ONE* 6(9): e25764. doi:10.1371/journal.pone.0025764. Contribution no. AED-11-013

Predicting Maximum Lake Depth

- Select surrounding topography
- Determine median slope
- Determine maximum distance in lake
- Depth
 - Max.Dist * Median.Slope


Key

iding topography

Assessing the method

- Compare to measured data
 - National Lakes Assessment Data
 - Bootstrapped Cross-validation
 - Web reported depths
- Over predicts
- Fit NLA model
- Use NLA model to correct
- RMSE: ~5-6m
- Correlation: ~0.7

Predicted (NLA Regression Corrected) Maximum Lake Depth

Using Volume Estimates

- Useful if they improve understanding of processes
- Tested
 - USGS SPARROW TN and TP loading estimates
 - Calculate residence time with volume and flow
 - Compare esimates to measured concentrations in lakes.
 - National Lake Assessment

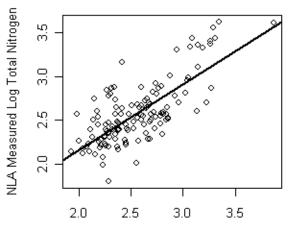
Nitrogen Concentration Comparison

Sparrow Model Estimate

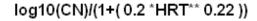

Modified Vollenwieder Estimate

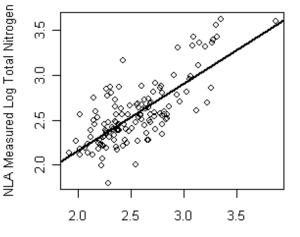
Conic Volume

Modified Vollenwieder Estimate


GIS Volume

NLA TN vs. Sparrow CN




Sparrow Observed Log Nitrogen Load Concentration Without Volume Estimate; r-squared= 0.4092

log10(CN)/(1+(0.2 *HRT** 0.21))

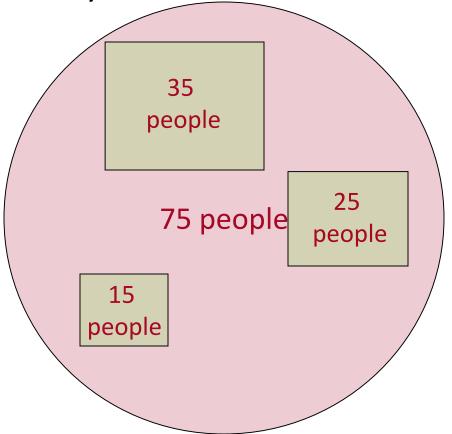
Sparrow Predicted Log Total Nitrogen With Conic Volume Estimate; r-squared= 0.559

Sparrow Predicted Log Total Nitrogen With GIS Volume Estimate; r-squared= 0.5712

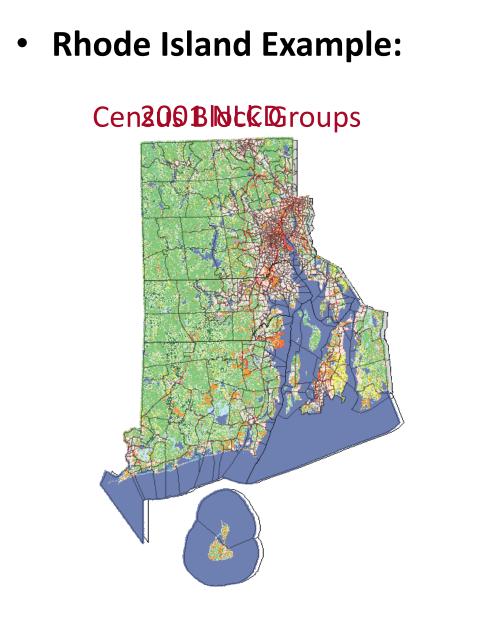
Ecosystem Services Beneficiaries

Beneficiaries

Populations most likely to benefit



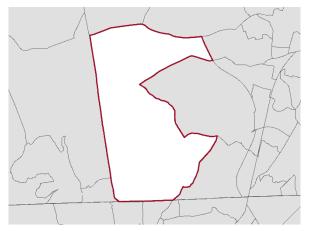
How do we connect people with services?

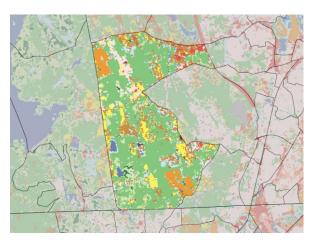


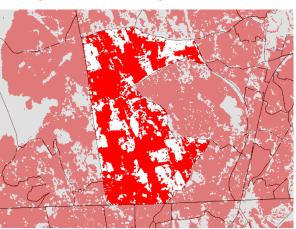
Dasymetric Population Modeling

Redistributing values from one geography to another based on ancillary data

Open Water
Low Intensity Residential High Intensity Residential Commercial/Industrial/Transportation
Bare Rock/Sand/Clay Quarries/Strip Mines/Gravel Pits Transitional
Deciduous Forest Evergreen Forest Mixed Forest
Shrubland
Orchards/Vineyards/Other
Grasslands/Herbaceous
Pasture/Hay Row Crops Small Grains Fallow Urban/Recreational Grasses
Woody Wetlands

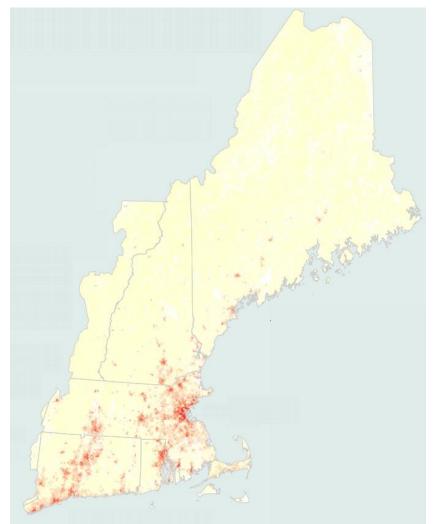

Emergent Herbaceous Wetlands




Dasymetric Mapping

Census Block Group Population: 2714 Population/pixel: 0.11 2001 NLCD

Populated Mask Population: 2714 Population/pixel: 0.17

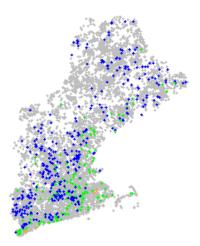


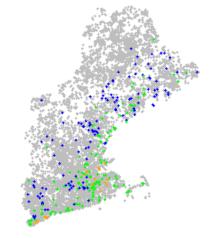
Dasymetric Mapping

Three Reduction Scenarios

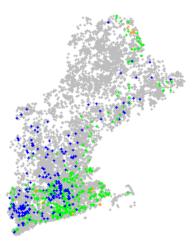
Reduce Air Inputs
 Reduce Urban Inputs
 Reduce Agricultural Inputs
 Inputs to Estuaries

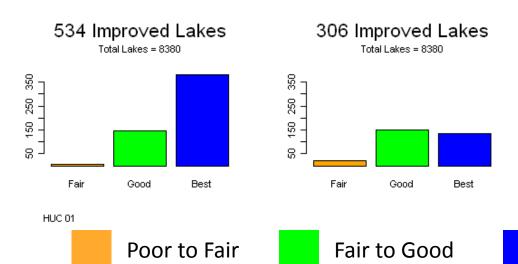
What are the benefits to lakes?

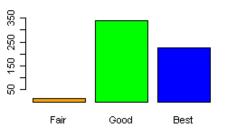

* P reduction for Urban and Agriculture Scenarios Only



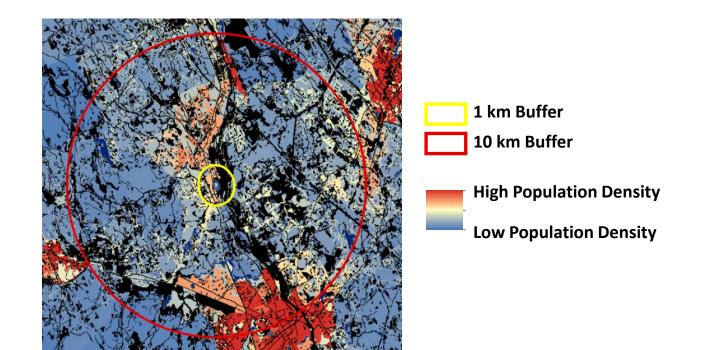
New England (HUC 01)


Air Scenario

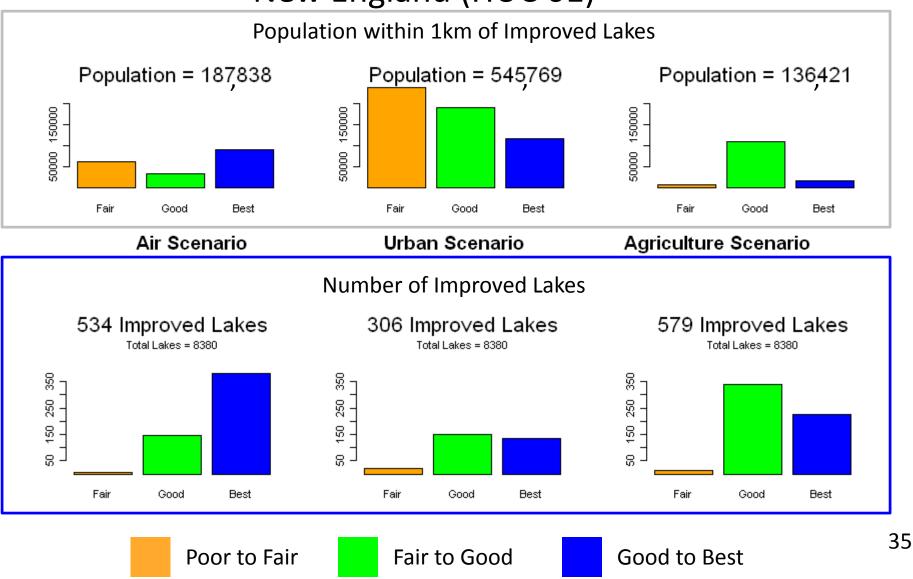

Urban Scenario



Agriculture Scenario

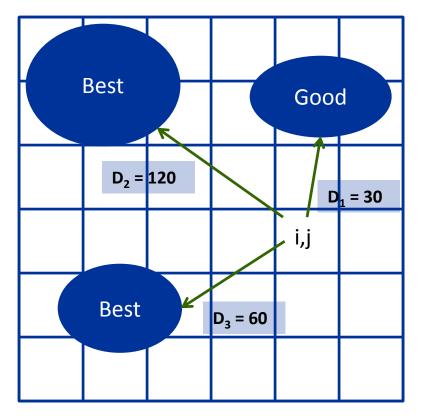

MRB1_MapScenarios20111101.r

Good to Best



Compare to Population

- Calculate total population for each improved lake
- Multiple Scales: 1km, and 10km

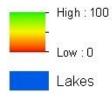

New England (HUC 01)

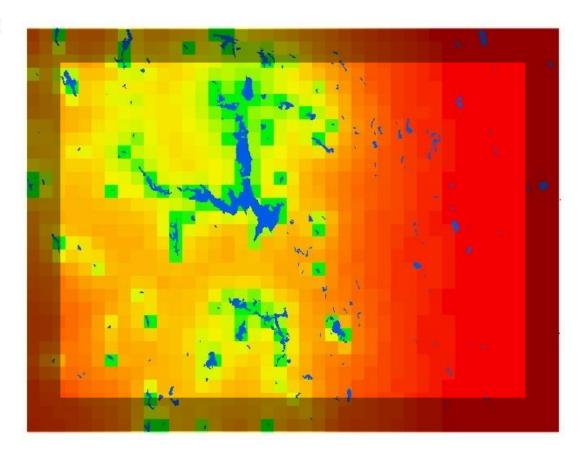
Scarcity

Landscape Lake Aesthetic Index (LLAI)

 $LLAI_{i,j} = \sum 1/D^*Appeal$

$$D_{1} = 1/30 * 4 = 0.13$$

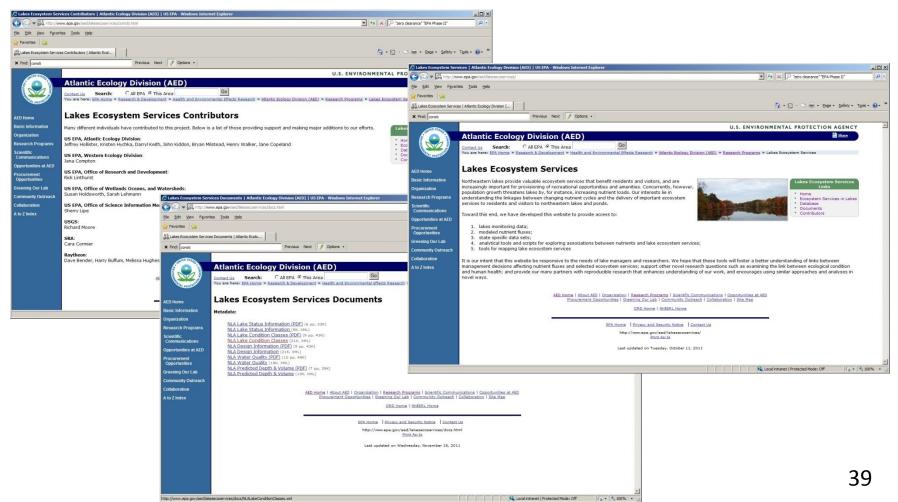

$$D_{2} = 1/60 * 5 = 0.083$$


$$D_{3} = 1/120 * 5 = 0.041$$

$$\sum = 0.254$$

will provide estimate of each pixels potential to receive aesthetic services from lakes

Landscape Lakes Aesthetic Index



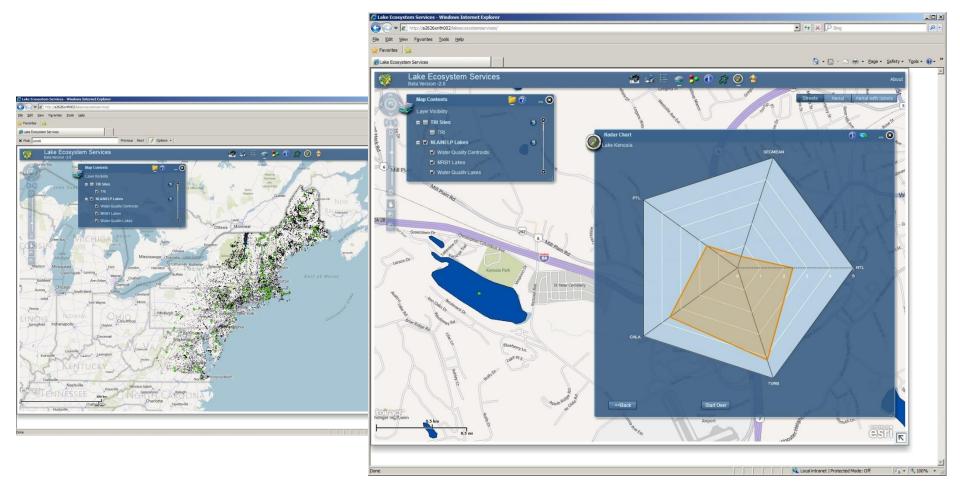
Decision Support

Public Website

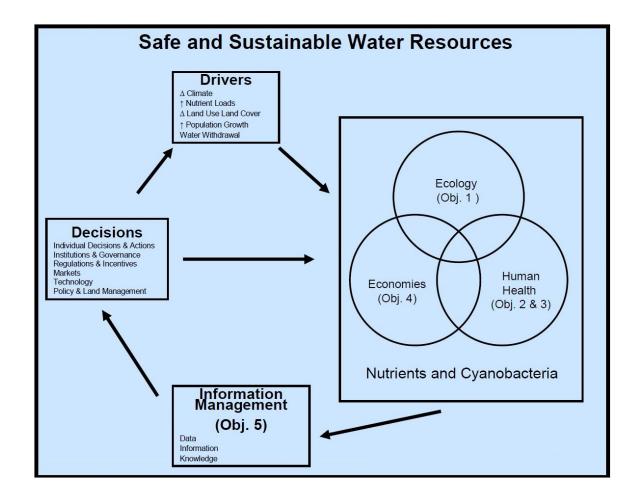
(http://www.epa.gov/aed/lakesecoservices)

Database

) 🕈 📔	💽 🗢 📴 http://www.epa.gov/aed/lakesecoservices/apex/index.html								
	w F <u>a</u> vorites <u>T</u> ools	<u>H</u> elp							
vorites			1						_
1	akes Ecosystem Service							🗄 • 🗟 • 🗆 🖶 •	Page +
PA Lakes	Ecosystem Services								
					Li	ake Status Information L	ake Conditions Design I	information Water Qualit	y Pred
₽ □		Go Ro	ows 15 💌 Actions						
less	<u>Conductivity</u>	<u>Turbidity</u>	<u>Total Organic Carbon</u>	Dissolved Organic Carbon	<u>Ammonium</u>	<u>Nitrate + Nitrite</u>	<u>Total Nitrogren</u>	<u>Total Phosphorus</u>	
	85.09	7.280	6.71	5.54	0.017	0.005	740	31	
	314.2	2.940	3.02	3.15	0.010	0.005	366	22	
	27.33	2.380	5.63	4.42	0.005	0.005	311	12	
	34.56	0.970	7.66	7.5	0.010	0.005	246	13	
	52.52	0.399	3.66	3.48	0.005	0.005	129	1	
	44.85	0.681	4.58	4.23	0.005	0.005	204	5	
	19.48	1.140	7.66	7.32	0.020	0.011	314	11	
	22.32	0.495	3.51	3.54	0.005	0.005	156	7	
	20.1	0.465	3.05	2.95	0.005	0.014	183	4	
	48.86	0.442	3.15	2.94	0.005	0.005	118	1	
	32.04	0.659	4.57	4.51	0.005	0.005	286	9	
	21.43	0.549	3.05	2.93	0.005	0.005	168	1	
	47.29	0.332	3.08	3.04	0.005	0.005	146	1	
	33.43	0.674	4.09	3.92	0.022	0.005	216	4	
		0.803	3.33	3.19	0.005	0.005	138	3	


40

Analytical Tools


		C Php R test - Windows Internet Explorer provided by EPA
		Google 🖉 C:\xampp\htdocs\gvis\Rphp_Jeff.html 🔽 47 🗙 Google
R Lakes Ecosystem Services US EPA - V	/indows Internet Explorer	Ele Edit View Favorites Icols Help
0 v 🖉 http://a2626xrith007/scripts/64b	Undex_p2.php?jpeg=http://a2626snth007/scripts/64bit/hemp/1321973043.jpg8jpe2=1321973043.jpg8stateparam=RI&condparam=CHLA&fmameparam=1321973043&c1=2&c2=6&et_reg=ST&msg g 49 🗴	🔎 Eng 🖉 🖌 🎓 😥 🗸 🏈 😥 🗸 🎯 ScatterChartID1 🖉 Php R test 🗙 👘 🖞 📩 👘 🔹 🔂 Scatter ChartID1
Ele Edit View Favorites Tools Help		
😭 Favorites 🙀		This webpage will use R, PHP and the Google Visualization API to plot two random variables
R Lakes Ecosystem Services US EPA	9	• 🖸 · 🖻 🖮 • Bage • Safety • Tgols • 🕡 • How many random points do you want to plot?: [100]
	Advanced Starch Starch	Submit
	LEARN THE ISSUES SCIENCE & TECHNOLOGY LAWS & REGULATIONS ABOUT EPA	
	Lakes Ecosystem Services	🖉 ScatterChartID153c12db - Windows Internet Explorer provided by EPA 📃 🗖 🔀
	Home You are here: EPA Home » Lakes Ecosystem Services » R	🕞 🕞 🔻 🌈 C: \xampp\htdocs\test\index.html 🔍 🍫 🗙 Google
	R	
	Ecosystem Services in Lakes Test Different Cut-points for Chlorphyll Condition in Rhode Island	Elle Edit View Favorites Iools Help
	Database Enter first cut-point: 2	😭 🏟 🏈 ScatterChartID153c12db 👘 🔹 🔝 🕆 🖶 Page 🔹 🔅 Tools 👻
	Documents Enter next cut-point: 6 Submit	
	Online Cl5	
	Contributors	
		4
	2°%	4 y
		2
		• • • • • • • • • • • • • • • • • • •
	State= RI EPA Region: Region_1	0
	State EPA Region Condition ClassPercent_LCLUCLPercent_LCLUCL	
	1: Low (<2) 17.21 0.00 40.66 17.58 8.58 26.58	
	2: Mid (2-6) 59.23 31.12 87.34 58.69 42.53 74.85 3: High (>6) 23.56 0.00 47.69 23.73 12.49 34.98	-2
	Map State Map Region	
		-4
	🔊 News Feeds 🕐 Podcasts 🕖 EPA Mobile 📨 News by Email 💿 Widgets 🥂 🏹	-4 -2 0 2 4
	EPA Home Privacy and Security Notice Contact Us	
	Last updated on Tuesday, November 22, 2011	
		Data: xdf• Chart ID: ScatterChartID153c12db R version 2.11.1 (2010-05-31) • googleVis-0.2.6 • Google Terms of Use
 Error on page. 	Cocal int	reversion 2.11.1 (2010 do 51) - googlevis-0.2.0 - oougle terms of ose
		41
		Done 🛞 🖓 🐙 My Computer 🔍 100% 👻 ;

ArcGIS Server

What's Next: Economics, Cyanobacteria, and Human Health

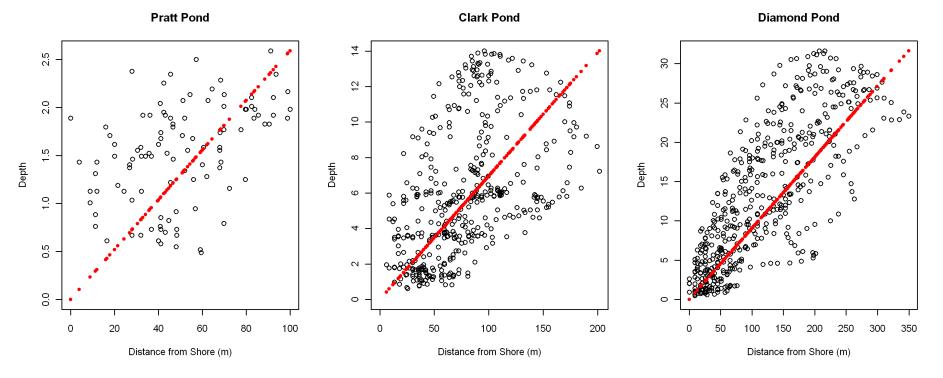
Cyanobacetria Integrated Approach

Expected Products

- Models predicting cyanobacteria abundance and probability of human toxicity risk
- Better understanding of cyanotoxin effects on mammalian endpoints
- Decision support system to estimate changes in human health risk and economic impact due to a variety of nutrient reduction scenarios

Economic Analysis

- Combine
 - Policy Relevant Scenario Analysis
 - Beneficiaries
 - Access to Services & Substitutes (Landscape Lake Aesthetic Index)
 - Public Values (Is a change from Good to Best of the same value as a change from Fair to Good?)
 - Environmental Justice



Methods

Is assumption that Depth = f(Distance)

