Experience Report of Physics-Informed Neural Networks in Fluid Simulations: Pitfalls and Frustration

Pi-Yueh Chuang and Lorena A. Barba (The George Washington University, Washington, DC, USA)

How Do PINNs (Physics-Informed Neural Networks) Work?

Automatic differentiation

Fig 1. Graphic illustration of PINNs

Study Overview

Study Aim

To understand the

- . feasibility of PINNs in practical engineering: controllability and predictability w.r.t. cost and accuracy, and
- 2. possibility of replacing traditional CFD solvers w/ PINNs.

Key Findings

- 1. No obvious ways to control accuracy: no obvious translation from training loss to prediction errors
- 2. No obvious ways to predict time-to-solutions
- 3. Weak-scaling efficiency is good, but weak scaling does not help the accuracy nor the time-to-solution
- 4. Cost-performance ratio not competitive w/ traditional CFD solvers
- 5. Not able to solve a simple vortex-shedding problem

Limitations and Disclaimer

- 1. We only consider the data-free applications of PINNs.
- 2. We did not exhaust all possible architectures and configurations. The qualitative findings only apply to the specific configurations we tried.

Acknowledgement

We appreciate the support by NVIDIA, through sponsoring the access to its high-performance computing cluster.

Multiple objectives

Analytica 2.5 -2.5-0.48 - 0.24 0.00 0.24 0.48Analytical -2.52.5 0.0

-0.36 -0.24 -0.12 0.00 0.12 0.24

Vortex Shedding Benchmarking: PINNs Gave Steady-State Solution

Fig 7. Finite difference solution: flow field is expected to have vortex shedding

Cost-Performance Benchmarking w/ a 2D Taylor-Green Vortex Problem

Fig 2. Contours showing degraded temporal accuracy

Fig 3. Comparing the cost-performance behaviors against traditional CFD solvers

Fig 4. Loss and accuracy versus training iterations show no straightforward relationship

Fig 5. Accuracy versus wall time shows no clear relationship between batch size and time-to-solution

Fig 8. PINNs simulation: no shedding at all

School of Engineering & Applied Science

THE GEORGE WASHINGTON UNIVERSITY

Fig 6 and Table 1. Weak-scaling benchmarking. No obvious benefit to convergence.

Fig 9. Drag and lift coefficients. PINNs results show a steady-state behavior.