
Jupyter-first
Hybrid and online
teaching

@LorenaABarba

Professor of Mechanical and Aerospace Engineering
The George Washington University, Washington DC

Efforts in open education
Sharing OER since 2009 via
— iTunes U
— YouTube
— TED-Ed
— GitHub
— self-hosted Open edX site

Disseminating via
— Twitter & self-hosted blog at lorenabarba.com

ht
tp

:/
/l

or
en

ab
ar

ba
.c

om

Added views
~1,079,010

checked 24 Jan. 2023

https://github.com/barbagroup/CFDPython

https://github.com/barbagroup/CFDPython

https://openedx.seas.gwu.edu

Rather than learn to code—Code to learn

‣ calls for “learning to code” — well-intentioned and
worthwhile, but they miss the point

‣ Narratives centered on jobs, producing skilled workers…

Computational Thinking:
—children can learn to
program and it can affect
the way they learn
everything else

Seymour Papert

Question:
If you choose a random chord on a given circle,
what is the probability that the chord is longer
than the circle’s radius?

A learner's diagram to answer the probability question

A diagram of the interviewer's challenge to Ellie's answer

Area C2: π R2
Area C1: 3/4 π R2

Faced with the paradox, Ellie starts
writing a program…

“ This trialogue between Ellie's mental model, the expression
of her mental model in encapsulated code and the running of
that code, allowed Ellie to successively refine the creative
structure of her thought.”

Teacher’s challenge:
Presenting a topic to learners through a
computational approach, how to structure an activity
that affords learners the opportunity to engage with
complex ideas?

It does not happen by accident…

Klahr, D. and Carver, S.M., 1988. Cognitive objectives in a LOGO
debugging curriculum: Instruction, learning, and transfer.
Cognitive Psychology, 20(3), pp.362-404.

How to eachive learning through programming?
1. Develop a model for what you want students to learn through
computing. Use only the programming needed for that learning to happen.

2. Use scaffolding and programming environments that support students
in learning the programming needed for the learning objectives.

3. Learning both programming and the target subject (mathematics,
physics, probability) may be synergistic: it will take less time than learning
each oen separately (but more time than learning just programming, or just
the isolated target subject). Pace will be paramount to success.

Guzdial, M., 2015. Learner-centered design of computing education: Research on computing
for everyone. Synthesis Lectures on Human-Centered Informatics, 8(6), pp.1-165.

What is computational thinking?

To me…
… as a computational scientist, the essence is what
we can do while interacting with computers, as
extensions of our mind, to create and discover.
That’s not the popular message today.

“Mindstorms” (1980), p. 182

— Seymour Papert, “Mindstorms” (1980)

The Power Principle
What comes first, 'using' or 'understanding'? The
natural mode of learning is to first use, leading
slowly to understanding. New ideas are a source of
power to do something.

Project Before Problemm
Projects are primary. Problems come up in the
course of projects and are sometimes 'solved' and
sometimes 'dissolved.' (The student using random-
color effects on screen: had you asked here what
she was doing, she would not have said 'problem-
solving.')

Media Defines Content
Old-school activities involve making inscriptions
on paper, while in Papert’s alternative involve
'manipulating a computer-based microworld.' New
media open the door to new content.

The goal is to use computational
thinking to forge ideas.

“Computers can be the foundation
of a new and dramatically enhanced
literacy.”

Andrea diSessa, 2000.

The defining feature of a literacy is that it's
infrastructural
Literacy is a socially widespread deployment of skills
and capabilities in a context of material support to
achieve valued intellectual ends —diSessa, 2001

The killer app: Jupyter
A new genre of open
educational resources
(OER).

The role of Jupyter is to give students, researchers,
journalists or industry engineers tools that give
them a coherent handle on the entire process of
computational exploration and discovery. We have
built it so the same tools are used for individual
data analysis or to create a published article, course
or book. — Fernando Perez

Open Education

Open education
‣ Open Ed movement was inspired by free &

open source software (FOSS).
‣ Features missed: open development,

networked collaboration, community,
value-based framework…

‣ OS ethics and practices: put computing at the center of
engineering education

History of OER
‣ 1994: “learning object” —idea that digital

materials can be made to be reused.
‣ 1998: “open content” —idea that principles

of FOSS could be applied to content.
‣ 2001 —founding of Creative Commons

—MIT OpenCourseWare launched.

1990 2000 2010

WWW OCW

History of OER
‣ 2002: “open educational resources” coined

— UNESCO Forum.
‣ Others join the OCW movement: Rice,

JHU, Tufts, CMU, USU…
‣ 2005: The OpenCourseWare Consortium
‣ 2007: OECD “Giving Knowledge for Free…”

1990 2000 2010

WWW OCW OCW Consortium

Recurring topics in OER
‣ reducing cost of textbooks for students
‣ increasing access (for worldwide learners)
‣ copyright and licenses
‣ altruism & public good

What did OER miss from FOSS?
‣ developing in the open
‣ collaborating/contributing
‣ community around OS projects
‣ culture & value-based framework

FOSS: developing in the open
‣ The OER narrative is often about: creation

vs. adoption, author vs. user
‣ MIT OCW was never open for

contributions.
‣ Rice’s Connexions intended to be open for

contributions, but this feature faded…

We create huge amounts of OER, but
there is very little reuse…

— Stephen Downes,
VI International Seminar of the

UNESCO chair in e-Learning (June2010)

https://youtu.be/AQCvj6m4obM

Openness is about the possibilities of
communicating with other people. It’s
not about stuff, what you do with stuff.
It’s about what you do with each other

— Stephen Downes, 2017

https://youtu.be/FPHYAFcUziA

Teaching in the open
‣ Open development, on GitHub
‣ Jupyter for teaching: go.gwu.edu/

jupyter4edu
‣ Publish learning objects—digital materials

can be made to be reused.

http://go.gwu.edu/jupyter4edu
http://go.gwu.edu/jupyter4edu

Why Open Education?
Pedagogy of openness—open teaching & learning
practices actively promote rich networks, lively
communities, and fertile connections.

Openness
…serves a pedagogical purpose: learning is richer
by open sharing.

Coordination
…in the model of open-source culture, to create
value together, fostering innovation & leadership.

Instructional design

Key concepts and design principles
1. idea of “computable content”
2. open pedagogy
3. modularization
4. harnessing “worked-example effect”
5. f2f active learning with live coding
6. learners documenting their work

Computable content
Educational content made powerfully interactive
via compute engines in the learning platform.

Engineers Code: re-usable computing
modules for undergraduate engineering

Example:
http://go.gwu.edu/engcomp3lesson1

http://go.gwu.edu/engcomp3lesson1

How to develop lessons:
1. Break it down into small steps
2. Chunk small steps into bigger steps
3. Add narrative and connect
4. Link out to documentation
5. Interleave easy exercises
6. Spice with challenge questions/tasks
7. Publish openly online!

Flipped learning with Jupyter:
1. Interactive via computation
2. Guided exploration before a normative
explanation, exploiting worked-example effect
3. Active learning (in class), e.g. live coding

In class…

– meta-study of 225 prior studies on active learning
– students in lecture-based courses were 55% more likely to fail
than those in active learning classes

Worked-example effect:
‣when providing full guidance on how to solve a

problem results in better student performance
than problem-solving conditions with no
guidance (it is a cognitive-load effect)

A technology creates its own pedagogy.

